DOI
stands for Digital Object Identifier
(
D
igital
O
bject
I
dentifier
)
,
and is the unique identifier for objects on the internet. It can be used to create persistent link and to cite articles.
Using DOI as a persistent link
To create a persistent link, add「http://dx.doi.org/」
「
http://dx.doi.org/
」
before a DOI.
For instance, if the DOI of an article is
10.5297/ser.1201.002
, you can link persistently to the article by entering the following link in your browser:
http://dx.doi.org/
10.5297/ser.1201.002
。
The DOI link will always direct you to the most updated article page no matter how the publisher changes the document's position, avoiding errors when engaging in important research.
Cite a document with DOI
When citing references, you should also cite the DOI if the article has one. If your citation guideline does not include DOIs, you may cite the DOI link.
DOIs allow accurate citations, improve academic contents connections, and allow users to gain better experience across different platforms. Currently, there are more than 70 million DOIs registered for academic contents. If you want to understand more about DOI, please visit airiti DOI Registration ( doi.airiti.com ) 。
Monitoring and Characterizing the Process Mean Shifts by Artificial Neural Networks
萬維君 , Masters Advisor:鄭春生 博士
繁體中文
管制圖 ; CUSUM ; 類神經網路 ; 製程平均值偏移 ; 偏移量 ; 平均連串長度 ; control charts ; CUSUM ; neural networks ; process mean shifts ; magnitude of shifts ; average run lengths


- 1.Banks, J., Principles of Quality Control, Wiley, New York (1989).
連結: - 2.Chang, S. I. and C. A. AW, “A neural fuzzy control chart for detecting and classifying process means shifts,” International Journal of Production Research, 34, 8, 2265-2278 (1996).
連結: - 3.Chang, S. I. and E. S. Ho, “A two-stage neural network approach for process variance change detection and classification,” International Journal of Production Research, 37, 7, 1581-1599 (1999).
連結: - 6.Cheng, C. S., “A multi-layer neural network model for detecting changes in the process mean,” Computers and Industrial Engineering, 28, 1, 51-61 (1995).
連結: - 7.Cheng, C. S., “A neural network approach for the analysis of control chart patterns,” International Journal of Production Research, 35, 3, 667-697 (1997).
連結:
- 李秋蓁(2006)。應用類神經網路建立偵測自我相關製程平均值偏移之管制法。元智大學工業工程與管理學系學位論文。2006。1-44。
- 李柎梓(2002)。整合SPC與EPC之研究─應用類神經網路於製程平均值變化之偵測。元智大學工業工程與管理學系學位論文。2002。1-0。
- 楊慧萍(2005)。以類神經網路建立偵測自我相關製程平均值偏移和參數估計之雙邊管制法。元智大學工業工程與管理學系學位論文。2005。1-72。
- 黃郁蓉(2005)。應用類神經網路監控多變量製程之變化與參數估計。元智大學工業工程與管理學系學位論文。2005。1-74。
- 阮冰如(2006)。應用類神經網路與支援向量機於多變量製程 變異來源之辨識。元智大學工業工程與管理學系學位論文。2006。1-58。