透過您的圖書館登入
IP:18.119.131.178
  • 學位論文

聚苯胺/氧化石墨烯奈米複合材料之合成及其電容效能研究

Study on the synthesis and electrochemical storage properties of polyaniline/ graphene nanocomposites

指導教授 : 廖建勛
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文採用微波輔助合成方式製備不同重量比的奈米桿狀結構聚苯胺/氧化石墨烯複合材料,同時也在高溫下以石墨烯搭載鉑金屬做為基材與觸媒,在無任何氧化劑的環境中以無電聚合方式製備奈米桿狀結構聚苯胺/鉑-石墨烯,並探討其電化學性質。實驗佐以X光繞射分析儀、傅立葉轉換光譜、場發射電子顯微鏡、電化學分析儀探討聚苯胺/氧化石墨烯在不同聚合環境下與無電聚合上的結構差異與其電化學性質。本文發現在不同聚合環境(微波、室溫)的過程中,微波輔助合成除了可以縮短原本室溫下長時間的聚合反應外更對聚苯胺奈米桿狀結構的生成具有相當程度的影響。而在電化學測試結果,微波輔助合成的方式在高比例4:1,0.1 Ag-1的情況下有著較高的電容值340 Fg-1,聚苯胺/氧化石墨烯奈米複合材料無論是在微波輔助合成反應或是室溫反應,其比電容值與在較高電流密下的電容行為均高於單純聚苯胺,顯示聚苯胺與氧化石墨烯之間有著良好的協同效應。另外以鉑-石墨烯為觸媒,進行無電聚合所製備的奈米桿聚苯胺/鉑-石墨烯,在電流密度1 Ag-1時其電容值為292 Fg-1,而在3 Ag-1 時,僅有約15%的電容損失(248Fg-1)顯示聚苯胺/鉑-石墨烯複合材料在快速充放電的過程中也有不錯的電容表現。

並列摘要


ABSTRACT The study is focus on the electrochemical property of microwave assisted synthesis polyaniline nanofibers/graphene oxide (PANI/GO) composite with different mass ratio. Besides, this study also used Pt deposited graphene as electrocatalyst and for the preparation of PANI/Pt-graphene without oxidant by electroless polymerization. The electrochemical property and structure of as-prepared composites were characterized by wide-angle X-ray diffractometery (XRD), Fourier transformed infrared (FTIR), field emission scanning electron microscope (FE-SEM) and electrochemical analyzer. The microwave-assisted synthesis shortens the polymerization time and has significant effects on the formation of PANI nanofibers, compared with the conventional procedure, the PANI/GO at 4:1 ratio by microwave synthesis reveals a higher specific capacitance 340 Fg-1 at current density of 0.1 Ag-1. In comparison, the PANI/Pt-graphene has a capacitance 294 Fg-1 at current density of 1 Ag-1. At a current density of 3 Ag-1, the specific capacitance maintained 248 Fg-1 with only 15% decrease reveals that the nanocomposite has a better capacitance at rapid charge-discharge procedure.

並列關鍵字

PANI GO microwave-assisted synthesis supercapacitor

參考文獻


[1] A. G. Pandolfo and A. F. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of Power Sources, vol. 157, pp. 11-27, 2006.
[2] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nat Mater, vol. 7, pp. 845-854, 2008.
[3] P. J. Hall and E. J. Bain, "Energy-storage technologies and electricity generation," Energy Policy, vol. 36, pp. 4352-4355, 2008.
[4] J. Yang, et al., "Carbon Electrode Material with High Densities of Energy and Power," Acta Physico-Chimica Sinica, vol. 24, pp. 13-19, 2008.
[5] A. Lewandowski and M. Galinski, "Practical and theoretical limits for electrochemical double-layer capacitors," Journal of Power Sources, vol. 173, pp. 822-828, 2007.

延伸閱讀