透過您的圖書館登入
IP:3.149.239.110
  • 學位論文

釕、鐵和鎳金屬誘導炔類化合物的環化反應與偶合反應研究

Ruthenium, Iron and Nickel-Promoted Annulations and Coupling Reactions using Alkyne as a Substrate

指導教授 : 鄭建鴻

摘要


本論文主要以過渡金屬作為催化劑,利用炔化合物與含親電子官能基的有機化合物進行環化反應,或是與有機金屬試劑進行耦合反應,並固化二氧化碳,進而開發新穎且有效率的有機合成途徑。 第一章主要為釕金屬催化磺酸基亞胺化合物與炔化合物進行碳-氫鍵活化與[3+2]環化反應,合成磺酸基茚胺化合物。此反應中釕金屬-碳會進行分子內加成反應,而非進行還原脫去形成[4+2]環化產物。 第二章主要探討鐵金屬誘導芳基甲醯甲醛化合物與炔化合物進行[4+2]氧化環化反應,於室溫下且短時間合成1,2-萘醌化合物。三氯化鐵在此反應中作為催化劑及氧化劑兩個角色,並誘導反應進行傅-克ipso位加成反應,形成環接中間體,再進行雙羰基轉移步驟,生成具有特殊的轉移化的產物。 第三章節講述鎳金屬催化炔化合物與格林納試劑進行碳鎂化反應,並固化二氧化碳合成多取代丙烯酸化合物。此反應中官能基立體障礙、推拉電子效應與鄰位官能基誘導效應之差異,使產物具有高位置選擇性。反應可提高至克級並仍能維持反應的高效率,對於固化二氧化碳於有機化合物上提供另一種可選擇的途徑。

並列摘要


New synthetic methods of transition metal-catalyzed annulation and coupling reaction with alkynes using ruthenium, iron and nickel as catalysts are described in this thesis. In first chapter, ruthenium-catalyzed C-H bond activation and [3+2] annulation from N-tosylarylimines and alkynes to synthesize substituted N-tosylindenamine is described. The proposed mechanism involves an intramolecular insertion of the C=NTs group into the C-Ru bond instead of forming [4+2] annulation product via reductive elimination. The second chapter reveals iron-promoted oxidative [4+2] annulation of arylglyoxals with alkynes for the synthesis of substituted 1,2-naphthoquinones at room temperature in short time. Interestingly, the products show an unusual pseudo-migration of the substituent on the arene ring of arylglyoxals. In the proposed mechanism, Fe(III)-promoted electrophilic addition of the vinyl cation to the ipso carbon of the aryl group to give a spiral intermediate and then migration of the keto carbon to the ortho carbon is proposed as key steps. In the final chapter, an economically efficient synthetic method of multi-substituted acrylic acid via nickel-catalyzed carbomagnesiation with alkynes and Grignard reagents and then fixation of carbon dioxide is developed. The catalytic reaction proceeds well with board substrate scopes and high regioselectivity. An alternative method for fixation of CO2 into organic compounds is feasible with this synthetic method and it proceed in gram scale without loss of efficiency in the same time.

參考文獻


18. Reddy, M. C.; Manikandan, R.; Jeganmohan, M., Chem. Commun. 2013, 49, 6060-6062.
2. (a) Amaral, A. C. F.; Barnes, R. A., J. Heterocycl. Chem. 1992, 29, 1457-1460; (b) Kuwahara, S.; Awai, N.; Kodama, O.; Howie, R. A.; Thomson, R. H., J. Nat. Prod. 1995, 58, 1455-1458; (c) Lee, C. Y.; Sher, H. F.; Chen, H. W.; Liu, C. C.; Chen, C. H.; Lin, C. S.; Yang, P. C.; Tsay, H. S.; Chen, J. J. W., Mol Cancer Ther 2008, 7, 3527-3538; (d) Shin, D. S.; Kim, H. N.; Shin, K. D.; Yoon, Y. J.; Kim, S. J.; Han, D. C.; Kwon, B. M., Cancer Res. 2009, 69, 193-202; (e) Wu, W. B.; Ou, J. B.; Huang, Z. H.; Chen, S. B.; Ou, T. M.; Tan, J. H.; Li, D.; Shen, L. L.; Huang, S. L.; Gu, L. Q.; Huang, Z. S., Eur. J. Med. Chem. 2011, 46, 3339-3347.
11. Bu, X. L.; Hong, L. C.; Liu, R. T.; Hong, J. Q.; Zhang, Z. X.; Zhou, X. G., Tetrahedron 2012, 68, 7960-7965.
22. Li, J. M.; Chen, H. Y.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K., RSC Adv. 2013, 3, 4311-4320.
6. Liu, C. R.; Yang, F. L.; Jin, Y. Z.; Ma, X. T.; Cheng, D. J.; Li, N.; Tian, S. K., Org. Lett. 2010, 12, 3832-3835.

延伸閱讀