透過您的圖書館登入
IP:54.89.70.161
  • 學位論文

濕式製程有機太陽能電池及金屬氧化物處理奈米銀線透明電極之研究

Study of Morphology Control and Device Structure Engineering of Solution-Processed Organic Solar Cells and Metal-Oxide-Treated Silver Nanowire Transparent Conductive Electrodes

指導教授 : 林皓武

摘要


本篇論文研究在探討使用快速快乾刮刀塗佈法之表面形貌及元件結構對有機太陽能電池的元件表現之影響,另外對三氧化鉬處理之奈米銀線透明電極進行光學、電性、機械性質及有機發光元件上的分析與量測。 首先,第一章介紹濕式製程有機太陽能電池與奈米銀線透明電極的發展現況,接著分別簡介其理論及工作機制。 論文的第二章,我們利用快乾式刮刀塗佈方法來製作反結構P3HT:PC61BM高分子有機太陽能電池,並將其元件表現、表面相分離形貌、膜層結晶程度及外部量子效率與傳統利用溶劑退火之元件作比較,探討其中的關聯性和進行系統性的研究。 論文的第三章,我們展示一創新的方法來製作溶液製程小分子有機太陽能電池,選用成本較低、消光係數較高且電子遷移率較好的C70來作為主動層中的受體。首先將不同的受體材料製作的元件來做比較,再來我們將C70導入到四種不同的施體材料中,並且利用旋轉塗佈法及快乾式刮刀塗佈方法皆可得到高效率的元件,效率分別為5.4%、5.9%,同時也對其主動層進行表面形貌作詳細的分析。 論文的第四章,我們提出一新穎非鹵素類雙層元件製程,其製程是利用C70在甲苯及鄰二甲苯中之不同溶解度的特性,由不同混合比例的共溶劑進行控制中間混合層的程度及垂直接面有機薄膜的表面形貌來達到效率的提升,並對其表面形貌、光機發光效率、元件表現以及其中關聯等進行系統的研究,另外此方法可成功套用到PBDTTT-C-T、PTB7等系統中,能量轉換效率分別為6.55%、7.15%。 最後,論文的第五章將簡單且低溫製程之三氧化鉬整合到奈米銀線電極上,可使片電阻從4411 ohm/square降低至30 ohm/square以下,並維持其高穿透度及提高機械性質,我們將此經三氧化鉬處理的奈米銀線電極應用在有機發光二極體元件上,得到元件外部量子效率高達10.3%。

並列摘要


In this thesis, I focused on development of morphology control and device structure engineering of solution-processed organic solar cells (OSCs) and solution-processed MoOx (s-MoOx) treated silver nanowire (AgNWs) transparent conducting electrodes (TCE). In the first part of this thesis, we reviewed the development of solution-processed OSCs, followed by the theory and working mechanism of silver nanowire transparent conducting electrodes. In chapter 2, we systematically studied the devices performance, surface morphology, crystallinity and external quantum efficiency (E.Q.E.) of P3HT:PC61BM organic solar cells fabricated by rapid-drying blade-coating and spin-coating methods with (w/) and without (w/o) solvent annealing. In chapter 3, we studied the optical constants of PC61BM, PC71BM and C70, and device performance of solution-processed small molecule OSCs utilizing these three acceptors and the donor-acceptor-acceptor push-pull donor molecules. In chapter 4, we investigated the atomic force microscopy, scanning electron microscopy, transmission electron microscopy (TEM), cross-sectional TEM images, photoluminance quenching measurement and device performance of inverted quasi-bilayer OSCs fabricated using halogen-free solvent. In chapter 5, we reported s-MoOx-treated AgNW TCEs utilizing low-temperature processes. Notably, this s-MoOx-treated AgNW TCEs exhibit multi-characteristics, such as high transmission, low sheet resistance, low haze value, better mechanical properties against bending and adhesion tests, and preferable gap states for efficient hole injection in optoelectronic applications.

參考文獻


[174] P. S. Wang, Y. Y. Lo, W. H. Tseng, M. H. Chen, C. I. Wu, J. Appl. Phys., 2013, 114, 063710.
[23] A. K. Ghosh, T. Feng, J. Appl. Phys., 1978, 49, 5982.
[45] K. H. Ok, J. Kim, S. R. Park, Y. Kim, C. J. Lee, S. J. Hong, M. G. Kwak, N. Kim, C. J. Han, J. W. Kim, Scientific reports, 2015, 5, 9464.
[5] A. R. b. M. Yusoff, D. Kim, H. P. Kim, F. K. Shneider, W. J. da Silva, J. Jang, Energy Environ. Sci., 2015, 8, 303.
[4] J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, J. X. Tang, Adv. Mater., 2015, 27, 1035.

延伸閱讀