透過您的圖書館登入
IP:18.232.88.17
  • 學位論文

四氟甲烷/八氟環丁烷電漿製備 奈米片狀結構薄膜之生長機制研究

Growth Process of Teflon-like Film with Nanowall Structure by CF4/C4F8 Mixed Plasma

指導教授 : 魏大欽

摘要


本研究使用圓管式微波電漿反應器,以C4F8 和CF4 混合電漿於反應腔 體中沉積特殊結構之氟碳薄膜於平面、立體與孔洞基材上,分析鍍膜表面 物理形貌以及化學組成變化,探討電漿放電區、過渡區與後輝光區中,不 同位置之基材上沉積之特殊表面結構及其生長機制。 首先對平面銅片基材進行鍍膜,發現基材表面可生長粗糙之奈米片狀 結構氟碳膜,並達到超疏水及疏油特性,分析不同位置化學組成、表面結 構、接觸角及電漿放射光譜,發現皆有對稱於電漿放電區的趨勢。再將平 面銅片基材對折後,觀察立體結構銅片基材中,離子轟擊對於基材內外側 之影響,由電子顯微鏡觀察到,內側表面形成不規則線狀紋路,顯示內側 雖有離子轟擊但自由基沉積量較少而無法生成特殊片狀結構;在元素分析 中發現,立體基材內外側鍵結組成與氟碳比都相近,但因薄膜沉積厚度不 同而有不同的表面結構。 接著使用孔洞基材觀察特殊結構薄膜生長情形,沉積於濾紙基材時, 特殊結構將隨基材表面形貌生長其中,在TEM Grid 基材之垂直洞口中發 現同樣可生長出氟碳奈米片狀結構。以重疊之三層PP 不織布基材探討自 由基擴散深度,發現自由基與離子主要消耗於第一層PP 不織布中,第二 層、第三層PP 不織布僅沉積少量且平坦之氟碳薄膜。 配合以上結果及不同沉積時間下,鍍膜表面形貌與氟碳奈米結構截面 SEM 圖,本研究提出特殊之氟碳奈米片狀結構其形成原因與成長機制: 基 材受離子轟擊,使沉積的奈米球聚集成網狀紋路,接著自由基以球狀堆疊 成長,當達一定厚度時結構表面趨於平緩,因表面條件改變開始沉積平滑 且垂直的奈米片狀結構。

並列摘要


In this study, the super-hydrophobic fluorocarbon films were prepared by mixed-gas plasma of C4F8 and CF4. The characteristics of the deposited films were investigated through WCA, FTIR, FE-SEM, and XPS. The analysis of plasma characteristics was performed by optical emission spectrometer (OES). In copper sheet substrate, surface morphology, chemical composition, optical emission spectroscopy or, contact angle were symmetrical to the plasma discharge region. These results revealed that free radicals diffuse from the discharge region and control the surface morphology and chemical composition. For the 3-D copper sheet substrate. FE-SEM and XPS analysis indicated that the films deposited on the substrate inside and outside, resulting in similar surface structures and fluorine/carbon (F/C) atomic ratio. However, the film thickness was different. It shows that free radical deposition and ion bombardment are both key factors in the formation of fluorocarbon nanowall (FCNW). The fluorocarbon nanowall (FCNW) growth mechanism was investigated by SEM cross-section view of substrates of different treatment time. In the initial stage, fluorocarbon nanoparticle-agglomerates were formed with a special network shape. After about 2 minutes, the smooth FCNW structure began to form. FCNW structure is only formed in the transition region because it requires proper ion bombardment and sufficient free radical deposition.

並列關鍵字

CF4 C4F8 Microwave plasma Fluorocarbon nanowall

參考文獻


[1] 謝健等, 近乎完美且穩定的超疏水結構. 科儀新知第三十一卷第五期,
2010.p. 74.
[2] Chapman, B., Glow Discharge Process. John Wiley, 1980.
[3] 劉志宏等, 大氣壓電漿表面改質技術與其應用介紹. 化工資訊與商情,
2006 :pp. 39 - 51.

延伸閱讀