透過您的圖書館登入
IP:3.138.134.107
  • 學位論文

平板式常壓電漿快速接枝甲基丙烯酸聚乙二醇 酯在聚偏二氟乙烯薄膜之研究

Plasma Induced Grafting of Poly(Ethylene Glycol) Methacrylate onto hydrophobic PVDF Membrane by Atmospheric-Pressure Dielectric Barrier Discharge

指導教授 : 魏大欽

摘要


本研究以常壓輝光介電質放電對聚偏二氟乙烯同時進行表面活化與接枝的步驟,使膜材接枝甲基丙烯酸聚乙二醇酯以達到抗生物沾黏之效果,探討單體濃度、常壓電漿功率對於接枝效能的影響。電漿處理後的膜材利用水接觸角、全反射式傅立葉轉換紅外線光譜儀、掃描式電子顯微鏡、X射線光電子能譜儀等儀器分析表面化學與物理結構,再進行酵素免疫分析法及細菌貼附測試探討膜材抗生物沾黏之效果。 研究發現常壓輝光介電質放電功率100W時為改質膜材最佳功率,其電漿氣體溫度介於60°C~130°C之間,並且不會造成膜材損壞。當單體濃度為30wt%時,電漿處理時間為60s時PVDF-g-PEGMA表面幾乎完全被單體覆蓋且接枝層厚度可達到0.96μm,此外,單體結構保有度並不會隨著電漿處理的時間上升而下降。當單體濃度為30wt%時,其抗蛋白質吸附量可有效下降至25%以下,另外,電漿處理時間15秒後,PVDF-g-PEGMA明顯有效降低Escherichia coli及Staphylococcus epidermidis細菌貼附。 本研究所開發的常壓輝光介電質放電可以快速、乾淨、均勻的製備大面積抗生物沾黏表面,除此之外也可運用在其他單體的接枝方面,是一種極有潛力的技術。

並列摘要


Poly(Ethylene Glycol) methacrylate (PEGMA) has been used for reducing protein adhesion and enhancing biofouling resistance in biomedical material application. In this study we report a method to graft Poly(Ethylene Glycol) methacrylate (PEGMA) onto poly(vinylidene fluroride) (PVDF) membrane by atmospheric dielectric barrier Discharge (DBD) plasma. Being different from traditional grafting which consists of plasma surface activation and subsequent thermal-induced graft-polymerization, this approach dip-coats monomer solution onto substrate and places it under helium DBD plasma for direct exposure. The surface composition and texture of the PVDF-g-PEGMA surfaces from plasma induction were characterized by Fourier-transform infrared spectroscopy (FTIR), water contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and water flux test after protein adsorption. In addition, the protein adsorption on the prepared membranes was evaluated using the method of enzyme-linked immunosorbent assay (ELISA). The distinction between atmospheric pressure plasma jet (APPJ) and DBD plasma is the treated membrane size. The PVDF membrane used in this study is 47 mm in diameter, which is larger than in APPJ. After plasma treatment, the contact angle decreases monotonically and the grafting density increases with increasing treatment time. The membrane’s biofouling resistance can be controlled via various plasma power and initial monomer concentration. According to XPS results, ion bombardment would not damage the grafting surface, instead, PEGMA monomer can be effectively grafted even under treatment time of 120 seconds. Furthermore, the ELISA and bacteria test results show that PVDF-g-PEGMA could reduce significantly the amount of Fibrinogen adhension and the attachment of bacteria.

參考文獻


[38] 古奕凡, "聚丙烯膜材表面超疏水化電漿改質技術及形成機制之研究," 私立中原大學碩士論文, pp. 1 - 119, 2009.
[8] 柯朝寅,"以表面誘導聚合技術製備含甲基丙烯酸聚乙二醇酯之聚氟化乙二烯薄膜與其低生物結垢性之探討," 私立中原大學碩士論文, pp. 1 - 165,2009
[7] 張家仁,"常壓電漿接枝甲基丙烯酸聚乙二醇酯在聚四氟乙烯薄膜之抗生物沾黏材料運用與探討," 私立中原大學碩士論文, pp. 1 - 119,2009
[41] 陳佳祐, "陰電性聚氟化乙二烯薄膜之表面親和性控制及其於特定蛋白質辨識與分離效能之研究, " 私立中原大學碩士論文, pp 1-89, 2010
[40] 施侑汝, "製備含甲基丙烯酸聚乙二醇酯之低生物結構性高分子薄膜於抗人體血漿蛋白吸附與血小板貼附之研究, " 私立中原大學碩士論文, pp. 1 – 113, 2008

被引用紀錄


張哲魁(2016)。常壓電漿接枝雙離子與帶正電材料於四氟乙烯薄膜之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201600696
劉沛謙(2015)。常壓電漿接枝與紫外光接枝雙離子性材料於高分子薄膜改質之比較研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201500666
施曉琳(2014)。常壓電漿接枝類雙離子材料於高分子薄膜之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201400497
徐郁璘(2013)。電漿輔助化學氣相沉積法製備有機矽氧烷氣體分離膜之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201300765
許馨勻(2012)。常壓電漿製備酸鹼敏感與抗生物沾黏薄膜之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201200648

延伸閱讀