透過您的圖書館登入
IP:3.138.204.208
  • 學位論文

水熱合成氧化鐵奈米結構於砷(V)離子之吸附

Hydrothermal Synthesis of Iron Oxide Nanostructures for the Adsorption of As(V) Ion

指導教授 : 林義峰

摘要


本研究使用水熱法分別以低溫 70 ℃與高溫 180 ℃為反應溫度,硫酸亞鐵與HMTA 為反應物,成功製備氧化鐵之奈米粒子與片狀結構。此外,為了克服小粒徑氧化鐵奈米粒子易團聚的缺點,於上述高溫 180 ℃反應中加入酚(Phenol),以進行酚醛(Phenol-Formaldehyde, PF)高分子聚合反應,形成有機無機混成之酚醛樹脂/氧化鐵複合材料,並於大氣環境下,進行高溫鍛燒,將酚醛樹脂移除,形成高孔隙度和表面積之氧化鐵孔洞材料。其中,HMTA 的多寡,使酚醛產生不同程度的聚合,造成高溫鍛燒時孔隙度的差異,可提升原先奈米粒子的比表面積,並藉 由氧化鐵本身具有的磁性和高比表面積,進行砷(V)離子的吸附,且藉由一外加磁場,即可將氧化鐵孔洞材料分離,降低分離成本,並提升其吸附效能,於重金屬水處理之應用具有相當大的潛力。最後,利用聯胺作為還原劑和酚醛樹脂輔助下於氮氣環境鍛燒將氧化鐵還原,使其提升對砷(V)離子的吸附效果。

並列摘要


In this study, the reaction temperature were low-temperature of 70°C and high temperature of 180°C in the hydrothermal process, in the presence of FeSO4 ·7H2O and HMTA, successful preparation of iron oxide nanoparticles and the plate structure. In addition, in order to overcome the shortcomings of small particles of iron oxide nanoparticles agglomeration, the high temperature 180°C reaction by adding phenol for the phenolic (Phenol-Formaldehyde, PF) polymerization. The product was organic-inorganic hybrid of phenolic resin/iron oxide composites. After the high-temperature calcination in air, removing the phenolic resin, the formation of the porous iron oxide of high porosity and surface area. The amount of HMTA affected that phenolic produce different degrees of polymerization, resulting in the differences of the porosity at the high-temperature calcination. Then, the original nanoparticles can enhance the specific surface area, and using the iron oxide itself has magnetic properties and high specific surface area in arsenic(V)ion adsorption. Iron oxide porous material can be separation by an external magnetic field, reducing separation costs, and enhance the adsorption performance has considerable potential for heavy metals in water treatment applications. Finally, the use of hydrazine as a reducing agent and phenolic resin-assisted to reduce the iron oxide in the nitrogen environment calcination, it enhance the effect of the adsorption of arsenic(V) ions.

並列關鍵字

Iron Oxide Adsorption of As Ion

參考文獻


[10] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures Synthesis Characterization and Applications,” Advanced Materials 2003, 15, 353.
[11] Y. Wu, P. Yang, “Direct Observation of Vapor−Liquid−Solid Nanowire Growth,” Journal of the American Chemical Society 2001, 123, 3165.
[12] W. Hui, X. Jiaqiang, and P. Qingyi, “Synthesis and chlorine sensing properties of nanocrystalline hierarchical porous SnO2 by a phenol formaldehyde resin-assisted process,” CrystEngComm 2010, 12, 1280.
[13] G. Gao, Xi. Liu, R. Shi, K. Zhou, Y. Shi, R. Ma, Eiji T.-M., and G. Qiu, “Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes,” Crystal Growth & Design 2010, 10, 2888.
[14] R. Liu, Y. Zhao, R. Huang, Y. Zhao, and H. Zhou, “Shape Evolution and Tunable Properties of Monodisperse Magnetite Crystals Synthesized by a Facile Surfactant-Free Hydrothermal Method,” European Journal of Inorganic Chemistry 2010, 4499.

延伸閱讀