透過您的圖書館登入
IP:3.128.205.109
  • 學位論文

用於氫氣純化之ZIF-8/polysulfone複合薄膜新製備方法之研究

A novel method for the preparation of ZIF-8/polysulfone composite membranes for H2 purification

指導教授 : 賴君義 胡蒨傑

摘要


氫氣(H2)的取得通常是藉由水煤氣轉化反應而來,而反應過程中會伴隨氮氣(N2)、二氧化碳(CO2)和甲烷(CH4)的生成,因此如何從混合氣中分離出氫氣對氫氣純化十分重要。氫氣的純化必須開發高性能氣體分離程序,以減少能源消耗和環境影響,有機金屬骨架(MOFs)其孔洞大小(window size)易於調控且具有選擇性吸附氣體能力,近十年來一直被學者應用於氣體分離與儲存的研究。有機金屬骨架薄膜之製備過程非常繁瑣耗時,我們若能簡化有機金屬骨架薄膜的製作方法,將可大幅提升有機金屬骨架薄膜的實用可行性,有鑑於此,本研究開發出和傳統長晶製作混合基質薄膜完全不同的創新方法,新方法可藉由簡單的製程製備出與傳統製膜方法性能相同的有機金屬骨架/高分子複合薄膜。 本研究使用壓濾方式製備ZIF-8/PSF複合薄膜,藉由添加聚多巴胺(PDA)增加ZIF-8顆粒間的黏著性,再利用氧化石墨烯(GO)填補ZIF-8顆粒間隙中的孔洞,最後以稀薄Pebax溶液修補剩餘缺陷。FE-SEM、DLS、PMI和氣體透過測試被用於鑑定薄膜性能,ZIF-8/PSF複合薄膜氫氣與氮氣選擇比(αH2/N2)由6.17(Pebax/ZiF-8/PSF)提升至15.11(Pebax/GO/PDA/ZIF-8/PSF),氫氣(H2)通量仍保有1000GPU。

並列摘要


Hydrogen production usually uses water–gas shift reaction. The product stream contains contaminants such as nitrogen, carbon dioxide, and methane. Therefore, how to separation the hydrogen from contaminants is quite important in hydrogen purification. For hydrogen purification, it is imperative to develop high-performing gas separation membranes in order to reduce energy consumption and environmental impacts. Metal-organic framework (MOFs) materials show variety aperture size and gas adsorption ability, therefore MOFs have been used for gas separation over the last decades. Metal-organic membrane needs to longer time to prepare, finding a simpler process to prepare the MOF membranes will be more practical. In this study, we used a new method different from in situ growth and mixed-matrix membranes. The new method is easier to fabricate the membrane with similar performance as the in situ growth method. In this work, pressure-filtration deposition method used to deposit ZIF-8 nanoparticles on polysulfone (PSF) substrate membrane and added polydopamine increasing ZIF-8 particle adhesion, next put graphite oxide (GO), in order to make graphite oxide (GO) into ZIF-8 particle gap, finally, a very dilute polymer solution used to seal the defects between the ZIF-8 particles. FE-SEM、DLS、PMI and bubble flowmeter were used to identify the composited membrane. The gas permeance of hydrogen kept 1000 GPU and the selectivity of hydrogen with nitrogen increased from 6.17 (Pebax/ZIF-8/PSF) to 15.11 (Pebax/GO/PDA/ZIF-8/PSF).

參考文獻


[24] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103 (2006) 10186-10191.
[70] A. Centrone, Y. Yang, S. Speakman, L. Bromberg, G.C. Rutledge, T.A. Hatton, Growth of metal-organic frameworks on polymer surfaces, Journal of the American Chemical Society, 132 (2010) 15687-15691.
[1] S. Mamun, H.F. Svendsen, K.A. Hoff, O. Juliussen, Selection of new absorbents for carbon dioxide capture, Energy Conversion and Management, 48 (2007) 251-258.
[2] Y. Liu, L. Zhang, S. Watanasiri, Representing vapor− liquid equilibrium for an aqueous MEA− CO2 system using the electrolyte nonrandom-two-liquid model, Industrial & Engineering Chemistry Research, 38 (1999) 2080-2090.
[3] R.W. Baker, Future directions of membrane gas separation technology, Industrial & Engineering Chemistry Research, 41 (2002) 1393-1411.

延伸閱讀