透過您的圖書館登入
IP:34.227.112.145
  • 學位論文

我國公路運輸系統能源節約及二氧化碳減量策略成效評估

The assessment of the energy saving and the carbon dioxide reduction strategies for road transportation sector

指導教授 : 張四立
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


根據美國能源資訊局(Energy Information Administration, 簡稱EIA)分析報告指出,在未來25年內運輸部門對於石油的需求將較其他最終使用部門快速增加,並由部分已開發國家統計資料顯示,運輸部門能源需求量及二氧化碳排放量仍持續增加中,在面對京都議定書生效後帶來的減碳壓力、傳統能源(汽柴油)逐漸耗竭及高油價時代來臨的挑戰下,有效管理運輸部門能源使用,將為國家能源分散與安全、抑制全球暖化及兼顧國家經濟發展之重要工作。 運輸部門之能源消費量及二氧化碳排放量有9成以上來自於公路運輸系統,爰此,本研究以公路運輸系統為探討對象,透過系統動態學方法,建構公路運輸系統運具運量、能源消費及二氧化碳排放之系統模型,並規劃以下單一情境策略: (1)情境1-假設未來逐年提升新車燃料效率;(2)情境2-假設未來年發展低耗能與替代燃料運具使用(一般成長) ;(3)情境3-假設未來年發展低耗能與替代燃料運具使用(加強成長) ;(4)情境4-開徵能源稅;及綜合情境策略:(1)情境5-綜合情境1及情境2;(2)情境6-綜合情境1、情境2及情境4;(3)情境7-綜合情境1、情境3及情境4;共計7種情境,加以探討不同情境策略下,能源節約量及二氧化碳減量成效,及檢視不同情境策略下,達成我國全國能源會議提出之2020年減量目標程度。 本研究結果顯示不同單一減量策略之節能減碳效果,依序為情境4、情境1、情境3及情境2;不同綜合減量策略之節能減碳效果,依序為情境7、情境6及情境5。以情境5與我國目前推行公路運輸系統節能減碳策略現況相似(提升新車燃料效率與發展低耗能及替代能源運具) 至2020年能源消費量將達15,898.96千公秉,CO2排放量達37,936,419噸,其能源消費及二氧化碳成長趨勢可達到減緩之效果,但無法達到2020年回歸至2008年能源消費及二氧化碳排放水準之目標,其能源節約量為862.28千公秉,減量目標達成率為30.0%,二氧化碳減排量為2,454,367噸,減量目標達成率為36.2%。以情境7提升新車燃料效率、發展低耗能與替代能源運具(加強成長)及開徵能源稅,最接近實現能源消費量及二氧化碳排放量於2020年回歸至2008年水準,其能源節約量為2,555.71千公秉,減量目標達成率為89.0%,二氧化碳減排量為6,591,474噸,減量目標達成率為97.2%。

並列摘要


According to the report from Energy Information Administration, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector over the next 25 years. The statistics from many of developed countries indicates domestic energy demand and CO2 emissions still increase every year. To manage using energy for Energy security, reducing CO2 emissions and economy growth are important policy under the challenges, global warming, energy crisis and high oil price. Energy consumption and CO2 emissions of road transportation constitute over 90 percent of transportation sector. Through System Dynamics, we establish a model including road vehicles, road activity, energy consumption and CO2 emissions. And, design some scenarios as below: (1) scenario 1 - raise fuel efficiency standard for new vehicles every year. (2) Scenario 2- promote high fuel efficiency cars and alternative fuels. (3) Scenario 3 - strenuously promote high fuel efficiency cars and alternative fuels. (4) Scenario 4 - impose energy tax. (5) Scenario 5- combined scenario 1 with scenario 2. (6) Scenario 6 - combined scenario 1, scenario 2 and scenario 4. (7) Scenario 7- combined scenario 1, Scenario 3 and scenario 4. On each scenario, this study assessed energy saving and CO2 reduction, and gained the result to meet targets set in the national energy conference. These scenarios are divided into individual scenarios (scenario 1, scenario 2, scenario 3 and scenario 4.) and combined scenarios (scenario 5, scenario 6 and scenario 7). The result of this study showed the effects of each individual scenario of energy saving and CO2 emissions reduction are in turns with scenario 4, scenario 1, scenario 3 and scenario 2. For combined scenario, it showed the effects of energy saving and CO2 emissions reduction are in turns with scenario 7, scenario 6 and scenario 5. Scenario 5 is likely the most effective strategy in energy saving and CO2 emission reduction of road transportation in Taiwan now. Estimating scenario 5, energy consumption amounted to 15,898.96 million liters and CO2 emissions amounted to 37,936,419 tons in 2020. Comparing to base scenario in 2020, energy saving amounted to 862.28 million liters and CO2 emissions reduction amounted to 2,454,367 tons. The rates of goal achieving are 30.0% and 36.2% respectively and trend of both energy consumption and CO2 emissions from 2005 to 2020 will grow slowly. But, it still can not go back to the level of 2005 in the year 2020. The result of energy consumption and CO2 emissions of scenario 7 in 2020 reached going back to the level of 2005 in the year 2020 very closely. Comparing to the base scenario in 2020, energy saving amounted to 2,555.71 million liters and CO2 emission reduction amounted to 6,591,474 tons. The rates of goal achieving are 89.0% and 97.2% respectively.

參考文獻


1. The United Nations Framework Convention on Climate Change, UNFCCC.
2. CO2 EMMISSIOMS FROM FUEL COMBUSTION, IEA, 2006.
3. Earth Trends Data Tables: Energy Consumption by Sector, WRI, 2005.
4. Annual Energy Outlook 2008, EIA, 2008
5. Theodoros Zachariadis& Nikos Kouvaritakis , Long-term outlook of energy use and CO2 emissions from transport in Central and Eastern Europe, National Technical University of Athens , 2003.

被引用紀錄


曾鈺雯(2011)。利用系統動力學探討產品服務系統之碳足跡評估-以洗衣行為為例〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2011.00430
陳志寬(2010)。應用系統動態模式STELLA模擬台灣交通運輸部門溫室氣體與空氣污染物之整合減量效益〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841%2fNTUT.2010.00401
楊庭瑋(2015)。考慮運輸效率與節能減碳之停車費模擬分析〔碩士論文,義守大學〕。華藝線上圖書館。https://doi.org/10.6343%2fISU.2015.00202
賴雅雯(2010)。我國公路運輸系統能源供給基礎建設 與能源消費、二氧化碳減量成效關聯分析〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-2508201000552600
邱煜程(2011)。改裝油氣雙燃料車補貼政策之經濟分析-以計程車為例〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-0108201115153600

延伸閱讀