透過您的圖書館登入
IP:44.192.247.185
  • 學位論文

複合型耐燃高分子之型態學,熱性質與裂解動力學的探討

Morphology, Thermal Characteristics and Degradation Kinetics of Complex Flame Retarded Polymers

指導教授 : 諸柏仁
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


無鹵化具難燃性的高分子為近年來許多研究的發展重點,其達成效果的路徑包含具有可捕捉自由基的結構,可在表面形成連續性之焦炭結構的阻燃遮蔽層,以及具有熱延遲性之耐熱性結構之技術研究為眾多研究論文之重點。然而從許多的發表成果與現行的材料應用後的效果發現,許多無鹵化具難燃性高分子材料雖具有明顯的耐熱性或是耐燃性,但在其他的物性上有時呈現負面的效果,例如吸水性的增加,硬度及韌性的降低,電氣性質的破壞,以及與其他材料摻混時的相容性問題等,此種的結果將會導致材料的應用遭到侷限,甚而影響在相對提升的物性需求下,無法因應許多產品的特性需求。夲研究的目的在建構具有耐熱性/耐燃性的高分子,同時亦能穩定或是提升材料物理性質,該種高分子達成方式為 (1) 增加芳香環數量,(2) 提升材料之交聯密度 (3) 加速熱分解時的焦炭形成率,以及 (4) 可釋放不燃性氣體等,藉由上述幾種方式可使高分子材料具有延緩與阻隔熱能的傳遞,以及稀釋熱源等特性以提升耐熱性/耐燃性,同時維持機械特性及電氣特性等作用。在夲研究中,我們首先以酚醛樹脂為基礎並製備數種具有較高含量的剛性/韌性結構的新型酚醛結構高分子,第一步先進行高分子的結構特性與特徵之了解,包含其溶解度差異性,改質方式對分子量的影響,以及熱反應動力學的變化。再者,選擇適合之學理模式來進行型態學,熱性質與裂解動力學的探討,以了解固化後之高分子在熱環境中的轉變,包含結構的自發性反應,裂解活化能的差異,熱環境的重量變化轉化率,以及焦炭形成速率等機制。此外,材料的機械性質亦將利用DMA或是TMA等相關儀器進行材料的物理性質變化,以期更深入了解材料的特性(儲存/損失模數、熱膨脹等)與差異。在第二階段的研究實驗中,將利用添加環氧樹脂或是無機型填充料的方式以建構有機/無機之複合型高分子,了解該複合型高分子在不同比例的添加量影響之下材料的變化,並利用紅外線光譜與固態核磁共振的儀器與學理方式進行不同的高分子間其相容性的變化與差異性性,進一步再以上述之方式探討環氧樹脂與改質酚醛樹脂在不同的添加比例下熱性質的差異。夲研究之結果將有助於了解改質型酚醛樹脂所建構之新型態複合型高分子在耐燃性的助益,包含耐燃性的提升方式與概念,未來在其他型態之無鹵型高分子應用方面,亦希望提供一種廣泛有效的評估方式與達成方法。

並列摘要


The preparation and application of halogen-free flame retard polymer becomes the major concern of environment friendly study in recent years, mostly researches put the attention in radical trapping reaction with appropriate structures, efficient flame-retard layer by continuous surface char-forming, and the thermal stable units contribute to heat resistance. There are still have some problems lead to the negative influences including higher H2O absorption, lower flexibility and modulus, destruction of electrical properties, and ease to phase separation in hybrid polymer, although the presented the excellent flame retardancy. The approaches of our study in the novel halogen-free flame retard polymers will settle on few ways such as (1) higher aromatic content, (2) increased cross-linking density, (3) accelerated the char yielding, and (4) inflammable organic volatiles release. They are possible to anticipate in heat resist, oxygen dilution, thermostability, and stable mechanical properties. In this report we follow the concepts aforementioned to prepare novel novolac resins which present higher density and toughness, the structure and characteristics are examined to realize the solubility, molecular weight and thermal kinetics at first, followed by the study in morphology, thermal characteristics and degradation kinetic to identify the structural reaction, degradation active energy change and the weight loss conversion, etc. Furthermore, physical properties are discussed detailed in the difference of loss modulus, storage modulus and thermal expansion using dynamic mechanical analysis or thermal mechanical analysis. The complex hybrid-polymer system with epoxy resin or inorganic filler is developed in advanced experimental by various weight ratio with IR and solid-state NMR to understand the influence of compatibility, and then the results and discussions of complex hybrid polymers will be presented correspondingly. It is necessary to understand the flame retardancy with novel modified novolac resins about techniques and concepts, for the further application widely in other kinds of halogen-free polymer, effective estimation will leads to the higher performance polymeric materials. Furthermore, flame retardancy can be made more pronounced by combine the inorganic filler to polymer complex. In contrast with blank, the obvious effect due to decreased burning time under 35 sec. at the initial content, and show the degree by CHABN > HPDEN > CPAN. Therefore, they show the V0 degree laminates only when filler content around 45 ~ 50 wt. % in contrast with the blank series (70 wt. %). On the other hand, the CPAN and HPDEN series show the burning time around at 5 ~ 6 sec. and the CHABN series is nearly zero. It indicates the effective flame retardancy of highly thermostable polymers can be achieved with lower inorganic filler content when using modified phenolic. They will display effective heat or flame barrier property through some possible mechanisms such as sharing the heat of polymer by inorganic filler, flame restricted by organic-inorganic hydride structure, and highly / quick char formation.

參考文獻


1. Camino G. and Costa L.; Performance and Mechanisms of Fire Retardants in Polymersw A Review, Polym Degrad and Stab, 1988, 20 271-294.
5. Lyons J.W.; The Chemistry and Uses of Fire Retardants, Wiley, New York, 1970.
7. Cuilis C.F.; Developments in Polymer Degradation, Vol. 3 (N. Grassie (Ed.)),
Appl. Sci. Publ., London, 1981.
8. Hirschler M.M.; Developments in Polymer Stabilization, Vol. 5 (G. Scott (Ed.)), Appl. Sci. Pub., London, 1982.

延伸閱讀