透過您的圖書館登入
IP:18.226.93.207
  • 學位論文

石化製程排放管道中揮發性有機化合物(VOCs)改善實例-以鉑/鈀貴金屬觸媒催化燃燒方式

Reduction of stack VOCs from petrochemical production process via Platinum/Palladium catalytic combustion

指導教授 : 張國慶

摘要


摘 要 學號:N9931002 論文題目:石化製程排放管道中揮發性有機化合物(VOCs)改善實例-以鉑/鈀貴金屬觸媒催化燃燒方式 總頁數:72頁 學校名稱:國立屏東科技大學 系(所)別:環境工程與科學系 畢業年月:2012年7月 學位別:碩士 研究生:葉暐倫 指導教授:張國慶 博士 論文摘要內容: 林園工業區是國內重要的石化重鎮,製程排放管道所排出的廢氣為大氣中揮發性有機化合物(VOCs)主要來源之一。本論文選定之製程位於林園工業區某石化廠,經對製程所產生VOCs的特性進行評估及比較各種處理技術後,選擇以鉑/鈀貴金屬觸媒焚化爐做為管末處理設備。 本研究主要利用環保署公告之排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法,在改變不同的操作條件 (燃燒溫度、VOCs濃度、廢氣流量)下測試相關效能,作為系統性能調整及操作依據。 實驗分進流無VOCs及含VOCs二階段進行。無VOCs進流部分,分別以不同加熱溫度、不同氣體流量條件下,測試熱回收效率的差異;在含VOCs部份,主要測試不同進流VOCs濃度、加熱溫度、氣體流量等操作條件下與出口VOCs濃度及破壞去除率之關係,並對設定操作條件下的耗電情況進行比較。 結果得知:1.加熱溫度設定在350 ℃,廢氣流量為600、960、1,200 Nm3/hr時,皆能將出口VOCs濃度處理至150 ppm以下,破壞去除率可達95 %以上,符合環保法規規定。改變加熱溫度為330、340 ℃時,並重覆相同的廢氣流量下,出口VOCs濃度亦可處理至150 ppm以下,破壞去除率亦達95 %以上。2.廢氣濃度為4,766 ppm,燃燒溫度在350 ℃,流量設定為600 Nm3/hr時,破壞去除率最佳(98.05 %)。3.上述操作條件下每月用電費約8,611元,而每處理1,000 Nm3廢氣電費為19.9元。4.在相同的燃燒溫度下,廢氣濃度越高、風量越大時熱回收率不佳。5.當燃燒溫度及廢氣流量上升時,用電量呈現增加的趨勢;當進流氣體的濃度增加時,用電量則呈現下降的趨勢。

並列摘要


Abstract Student ID: N9931002 Title of Thesis: Reduction of stack VOCs from petrochemical production process via Platinum/Palladium catalytic combustion Total Pages: 72 Name of Institute: National Pingtung University of Science and Technology Name of Department: Department of Environmental Science and Engineering Date of Graduation: July 2012 Degree Conferred: Master Name of Student: Wei-Lun Yeh Adviser: Dr. Kuo-Ching Chang The Contents of Abstract in this Thesis: The stack VOCs from petrochemical production process is one of the main sources of volatile organic compounds (VOCs) in the air in Lin Yuan Industrial Zone, an important petrochemical center in Taiwan. After evaluating the characteristics of the VOC’s from the production process of some petrochemical facility in the Linyuen industrial Zone, the platinum / palladium catalytic incinerator is applied as stack end treatment. The online flame ionization detection (NIEA A723.72B) published by Environmental Protection Administration (EPA), R.O.C. (Taiwan), is applied to determine total hydrocarbons and total non-methane hydrocarbon contents from the discharge pipeline and tested under different conditions: various combustion temperature, VOCs concentrations ,and exhaust gas flow rates, toevaluate the efficiency as the basis for the operation parameters. The experiment consisted of two stages. At first stage, it was to evaluate the temperature and flow-rate dependence of heat recovery with feeding containing no VOCs. The feeding containing VOCs was applied to the second stage to study the relation between incoming concentration and destructive removal efficiency (DRE) of VOCs under various operation conditions, and evaluated energy consumption of the operation conditions. The results showed: (1) operation at heating temperature 350 ℃ and exhaust gas flow rate 600, 960, and 1,200 Nm3/hr,respectively,the exit concentration of VOCs could be reduced to less than 150 ppm, and DRE could reach to more than 95 %,complying with the Environmental Protection Administration Act, R.O.C.(Taiwan). Repeat the same operation at lower heating temperature , 330 and 340 ℃, DRE could still attain to more than 95 %, the results still complied with the Act; (2) the optimal operation condition with exhaust concentration of 4,766 ppm, at 350 ℃, 600 Nm3/hr achieved the best DRE (98.05 %); (3) the average energy cost of the optimal operation condition was NT$19.9 per 1,000 Nm3 exhaust; (4) at same combustion temperature, the higher the exhaust concentration and stronger exhaust gas flow rate, the poorer heat recovery; (5) the energy consumption increases as the combustion temperature and exhaust gas flow rate increased,and decreased as the exhaust concentration increases. Keywords:VOCs, Platinum/Palladium catalyst, Catalytic cinerators, Destruction removal efficiency

參考文獻


20.陳冠豪,2003,以溶膠凝膠法製備MnOx/Al2O3觸媒焚化處理三氯乙烯之研究,碩士論文,國立成功大學,環境工程學系,台南。
4.USEPA, 1978, Radian Corp, ”Control techniques for volatile organic emission from stationary source”, EPA-450/2-78-022.
21.James J. Spivey, 1987, “Complete Catalytic Oxidation of Volatile Organics”, Industrial Engineering Chemical Research, Vol.26, No.11, pp.2165-2180.
23.Never, N. D., 1995, Air pollution Control Engineering, McGraw-Hill, International Ed.
29.Tichenor, B. A. and Palazzolo, M. A., 1987,“Destruction of volatile organic compound via catalytic incineration”, Environmental Progress, Vol.6, No.3, pp-172-176.

被引用紀錄


Wan, Y. Z. (2010). 重新構作社會:浮現–系統論的觀點 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2010.00833

延伸閱讀