透過您的圖書館登入
IP:18.222.184.162
  • 學位論文

溶液中鈷離子與鎳離子之高效率萃取分離之研究

The Study of High Efficiency Extraction and Separation of Cobalt(II) Ions and Nickel(II) Ions in Solution

指導教授 : 王文裕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著科技的進步,3C產品、油電混合車、大型儲能電池、電動摩托車的發展日新月異,鋰電池的使用及需求量也逐年增加,連帶衍生廢電池回收處理的問題;目前國內的廢電池回收場,主要針對錳鋅電池或錳鐵電池進行處理,而鋰電池仍以境外輸出處理居多,因此,能發展一套回收處理技術,不但可降低對環境上的危害,還能形成一種循環經濟減低工業上製造的成本,將有利於解決國內日益漸多的廢鋰電池問題。 本研究主要探討三元系(LiCo2/LiNiO3/LiMn2O3)電池回收錳後之貴重金屬鈷鎳分離。先利用硫氰酸根離子與鈷、鎳離子形成Co(SCN)42-、Ni(SCN)42-之錯合物,再以酸性萃取劑(P507)萃取分離出鈷離子形成P507-Co,後續透過硫酸反萃鈷離子並加以回收。 本研究設定參數條件包括:萃取劑選用P507、皂化率60%、稀釋劑選用庚烷、鈷鎳比操作範圍在1:3-3:2之間、萃取劑對鈷離子莫耳數比為4、硫氰酸銨體積莫耳濃度0.7 M、油水體積比1:1、溫度控制50℃,最終鈷萃取率可達93.52%以上,鎳的萃取率僅2.05%,分離係數為704。 關鍵字:鈷、鎳、硫氰酸根、錯合化學、溶劑萃取

關鍵字

硫氰酸根 錯合化學 溶劑萃取

並列摘要


Annual demand for lithium-ion batteries for usage of electronic products, hybrid electric vehicles, large storage batteries, electric motorcycles is increasing due to advancements in science and technology. However, this causes a problem of waste batteries recycling. The battery recycling plants in Taiwan at present only reclaim manganese batteries and alkaline zinc-manganese dioxide batteries, while most lithium-ion batteries are recycled abroad. If high concentrations of precious metals from waste lithium-ion batteries can be extracted, not only environmental hazards can be reduced but industrial manufacturing costs can be cut as well, which is favorable in solving the problem of waste lithium-ion batteries. This research mainly discusses the separation of cobalt (II) and nickel (II) ions from lithium-ion batteries following recycling of manganese. Cobalt (II) and Nickel (II) ions can be bonded with thiocyanate (SCN-) ions in NH4SCN solution to form Co(SCN)42- and Ni(SCN)42- complexes. Subsequently, cobalt (II) ions are extracted by acidic P507 extractant to form P507-Co and then sulfuric acid is used for further extraction and recovery of cobalt ions. The optimum operating parameters were as follows: P507 as extractant, saponification ratio of 60%, n-heptane as diluent, molar ratio range of cobalt-nickel at 1:3-3:2, molar ratio of extractant to cobalt-ion at 4:1, molarity of NH4SCN at 0.7M, volumetric ratio of oil-water at 1:1 and temperature control at 50℃. The final cobalt extraction rate was larger than 93.52% while the nickel extraction rate was only 2.05%, whereas the separation coefficient was 704. Keywords: Cobalt, Nickel, Thiocyanate, Complexion, Solvent Extraction.

並列關鍵字

Cobalt Nickel Thiocyanate Complexion Solvent Extraction

參考文獻


林佳良,回收廢二次鋰電池有價金屬,碩士論文,朝陽科技大學環境工程與管理所,(2014)。
許芢賓,溶劑萃取分離廢二次鋰電池有價金屬,碩士論文,朝陽科技大學環境工程與管理所,(2016)。
許政凱,自廢二次鋰電池正極材料以超音波分離錳及微乳液分離鈷與鎳,碩士論文,朝陽科技大學環境工程與管理所,(2016)。
秦孝德,電透析協同錯合反應分離水中鈷離子與鎳離子,碩士論文,朝陽科技大學環境工程與管理所,(2016)。
許庭愷,以酸性萃取劑萃取稀土元素釹(Ⅲ)與釤(Ⅲ)之平衡研究,碩士論文,國立臺北科技大學化學工程研究所,第16-19頁(2014)。

延伸閱讀