透過您的圖書館登入
IP:3.145.54.199
  • 期刊

台灣光電轉型「最小衝突」戰略:情境與土地規模等地選址模式

Least Conflict Siting Strategy for Solar Development: A Case Study in Taiwan Using Scenario-based Spatial Analysis

摘要


面對全球能源短缺與氣候變遷,各國積極發展再生能源。台灣政府設定2025年達成光電20GW裝置容量目標,修訂再生能源法規對應因應光電設置產生之大量新興土地需求,進而造成環境與社會衝突。傳統能源規劃模式乃依總用電需求評估所需發電量,忽略與空間環境各面向總體考量;相較之下,整合能源規劃可減少再生能源發展造成的「綠色衝突」。再生能源電厰用地需求,較傳統能源電廠用地需求量更大且條件不同,因此能源轉型不只需要發展新的能源類型,亦需搭配新的能源空間規劃「最小衝突」策略。本研究使用台灣國土利用現況調查資料中台灣非都市土地的「未使用地」作為空間範疇之設定,嘗試在不同環境保護限制程度以及發展區域面積等第篩選的限制下,找出適宜開發的區位及探討其總體綠能發電潛力。研究結果發現,以開發率70%計,低環境限制情境發電約15.5GW容量,遠高於中環境限制(10.6GW)以及高環境限制(9.9GW)。本研究亦發現以單一開發基地的土地面積大小等第作篩選條件,會顯著影響總體光電建置容量。舉例而言,只考慮基地面積20公頃等第以上的開發情境,將比0.5公頃等第以上的開發情境少發電總量約7.8GW的容量,換言之,以台灣的土地條件而言小面積基地發電總容量更有達到政策目標之可能性。故本研究建議應以整合電力規劃,避開重要環境區域與自然資源區域,著重開發小規模電廠與社區型光電。

並列摘要


To mitigate greenhouse gas emissions, the Taiwanese government has laid out a long-term plan to increase the capacity of renewable energy across the country. One of the near-term goals is to develop 20 gigawatts of photovoltaic capacity (GWc) by 2025. After the setting of this goal, rapid development plans were made, causing environmental and social land use conflicts. Taiwan's current approach favors industrial-scale solar farms, with little social and environmental considerations. We believe that the integration of more purposeful and targeted environmental planning techniques could help decision-makers reach photovoltaic development goals while reducing negative environmental and social impacts. We utilize a least conflict spatial analysis approach to identify possible photovoltaic development areas. We map the "unused" land from the National Land Use Survey Database and employ three development scenarios representing different levels of environmental protection. Scenario one shows development of all unused land with no environmental considerations. Scenario two shows development of unused land except land identified for protection by zoning and land use definitions, such as ecological conservation zones, national parks, nationally important wetlands etc. Scenario three shows development of unused land except everything from scenario two as well as land that isn't officially protected, but has been identified as supporting natural resources, ecosystems, or socio-economic importance, such as irrigation and drainage land, forest land, salt pan lands, and cemeteries. We calculate development possibilities under each of these scenarios to determine whether Taiwan's photovoltaic goals can be met without sacrificing natural resources. The results show that under a development rate of 70%, scenario one can support 15.5GWc, scenario two can support 10.6GWc, and scenario three can support 9.9 GWc. Scenarios two and three show marginal differences in development potential compared to scenario one. We also found that the size classification of development sites significantly affects the total potential development capacity. For instance, the potential capacity when restricting development to sites above 20 hectares is 7.8GWc less than that when considering all sites greater than 0.5 hectares. This shows that there is more development potential when small-scale photovoltaic developments are pursued. We recommend that decision-makers utilize spatial analysis techniques in energy transition planning, avoid developing areas of critical environmental and social significance, and increase effort into small-scale and community-based photovoltaic development.

參考文獻


Brewer, J., D. P. Ames, D. Solan, , R. Lee, and J. Carlisle. 2015. Using GIS analytics and social preference data to evaluate utility-scale solar power site suitability. Renewable Energy 81: 825-36, doi: 10.1016/j.renene.2015.04.017.
Corbin, C. I. 2003. Vacancy and the landscape: Cultural context and design response。Landscape Journal 22(1): 12-24, doi: 10.3368/lj.22.1.12.
Gandy, M. 2016. Unintentional landscapes. Landscape Research 41 (4): 433-40, doi: 10.1080/01426397.2016.1156069.
Georgiou, A. and D. Skarlatos. 2016. Optimal site selection for sitting a solar park using multi-criteria decision analysis and geographical information systems. Geoscientific Instrumentation Methods and Data Systems 5: 321-32, doi: 10.5194/gi-5-321-2016.
Hernandez, R. R., S. B. Easter, M. L. Murphy-Mariscal, F. T. Maestre, M. Tavassoli, E. B. Allen, C. W. Barrows, J. Belnap, R. Ochoa-Hueso S., Ravi, and M. F. Allen. 2014. Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews 29: 766-79, doi: 10.1016/j.rser.2013. 08.041.

延伸閱讀