透過您的圖書館登入
IP:3.139.86.56
  • 期刊

銅合金真空連鑄製程溫度場與顯微組織模擬技術

Numerical Simulation of Temperature Field and Solidification Morphologies of Copper Alloy by Vacuum Continuous Casting

摘要


本研究的主要目的是針對銅合金真空連續鑄造製程,發展出一套凝固顯微組織模擬預測系統。在不同的連鑄速度(60~90mm/min)與澆鑄溫度(1100~1200℃)製程條件下,有效預測銅合金凝固過程的溫度場分佈/固相分率與晶粒成長型態,並進一步與實際的實驗結果相互驗證。本凝固模擬系統主要針對巨觀尺度下的溫度熱傳系統與微觀尺度下的晶粒成核和成長系統進行耦合。在溫度場方面,主要採用有限差分法對熱傳方程進行計算,晶粒的成核和成長則採用Cellular Automaton method建立。從顯微組織模擬的結果可以得知,隨著連鑄引拔速度的增加,合金凝固的顯微組織將由原本軸向生長的晶粒型態轉為軸向-徑向混合生長的型態;隨著澆鑄溫度的增加,晶粒型態則由軸向-徑向混合生長的晶粒型態轉變為軸向生長的型態。最後經由本研究所建立的顯微組織模擬系統,將預測的結果與實際連鑄實驗金相結果進行定性與定量的比較,進一步驗證本模擬預測系統的準確性。

並列摘要


The purpose of this study is to predict the morphologies of the solidification process for copper alloys by vacuum continuous casting (VCC) process. In different casting speed (60~90mm/min) and the pouring temperature (1100~1200℃), the numerical simulation system could effectively predict temperature distribution, solid fraction and grain growth patterns for copper alloy solidification process. In numerical simulation aspect, finite difference method (FDM) and cellular automaton (CA) model were utilized to solve the numerical calculations of the macro-temperature field, micro-nucleation and grain growth of copper alloy respectively. From the observed simulation results, the grain morphology has a change from axial to axial-radial growths as increasing casting speed, and has a change from axial-radial to axial growths as increasing pouring temperature. The cast grain morphology simulated by CAFD model had a good correspondent to the result of actual casting experiment.

延伸閱讀