鋼鐵業是世界上最大的能源密集產業之一,其佔了全球二氧化碳排放的5%。世界鋼鐵協會(Worldsteel)於2008年提出在鋼鐵生產上,能源成本,涵蓋熱和電,通常佔總生產成本的20%~40%。若實行節能措施,將能有效節省鋼鐵生產過程中必要支出成本的花費。而決策者常面臨的問題是能源密集型產業二氧化碳減排的成本效益問題,有越來越多的文獻研究調查國家或地區投資清潔能源技術的經濟影響。 本研究主要採取專家評估法,進一步建立低碳技術經濟模型(bottom-up model),規劃及預測台灣鋼鐵業減碳成本曲線,篩選適合短、中、長期各階段發展的減碳選項推動的優先順序。依據減碳成本曲線的結果,挑選出減碳潛力及減碳成本最高的技術,納入二氧化碳減量在總體經濟分析中的考量,採用投入產出分析方法,研究該技術投入後所帶動的經濟影響。結果顯示,減碳成本最低的減碳措施是能源效率改善-高爐/轉爐煉鋼(高爐頂壓力回收渦輪機)和能源效率改善-軋鋼處理(熱進爐);最高的則是碳捕集與封存(CCS)和熔融還原。至2020年後開始,可用的減碳措施相較於2015年來說明顯增加,至2030年平均減碳成本大幅提高,主要是採用了減碳成本高的CCS技術的結果。 因CCS為減碳潛力及減碳成本最高的技術,也是最具挑戰及對產業影響較大的技術,故以此技術作為產業經濟帶動及關連影響的代表性技術,進一步做燃燒後捕集設備投入產出分析研究。結果顯示,鋼鐵業若發展燃燒後捕集設備的建置,其最終需要的變動,將帶動所有產業的供給(產出)增加,並且除了機械設備、化學材料、電腦、電子及光學產品、專業、科學及技術服務、營造工程等產業為建置燃燒後捕集設備必須投入的業別,將會帶動其中間投入增加外,另外在其它產業的中間投入帶動影響上,以礦產、鋼鐵、電子零組件、批發及零售的中間投入增加幅度最為明顯。
The steel industry is the largest energy consuming manufacturing sector in the world as well as one of the most important sources of CO2 emissions. It accounts for 5% of the global CO2 emissions. In iron and steel production, energy costs, including heat and electricity, usually account for 20%~40% of the total production cost. If energy saving measures are implemented, it will be able to effectively save the cost of steel production process. Policy makers face to questions about the costs and effectiveness of assessing CO2 emission mitigation options. There is a growing number of studies worldwide aiming at investigating the broader economic implications of investing in clean energy technologies at a national or a regional level. This study establishes an bottom-up model, plans and predicts the carbon abatement cost curve of the Taiwanese steel industry, and screens the priorities for carbon abatement options that are suitable for short-term, immediate, and long-term development. According to the results of the carbon abatement cost curve, the technology with the highest carbon abatement potential and carbon abatement cost is selected, and the consideration of CO2 reduction in the macroeconomics analysis is included. The input-output analysis method is used to study the economic impact driven by the technology input. The results suggested that the lowest abatement cost of abatement lever are blast furnace top-pressure recovery turbine and hot charging, the highest abatement cost of abatement lever are CCS and smelt reduction. By 2020, the available abatement lever will increase significantly compared to 2015, and the abatement cost will increase significantly by 2030, mainly due to the adoption of CCS technology with high abatement cost. Because CCS is the most challenging and influential technology to the industry. Therefore, it is used as a representative technology for industrial economic driving and related influences, and plant to do input-output analysis of post-combustion capture systems. The results suggested that if the construction of post-combustion capture systems are developing, the changes in final demand will drive the supply of all industries to increase.