透過您的圖書館登入
IP:18.188.108.54
  • 學位論文

都市公園綠地微氣候調節服務之能力與流動

Capacity and Flow of Microclimate Regulating Services of Urban Parks

指導教授 : 林寶秀

摘要


都市中公園綠地為生態系統服務的主要來源,隨著氣候變遷及都市的擴張、熱島效應加劇,影響都市居民的舒適度及生活品質。公園綠地透過植被的遮蔽和蒸發散作用調節都市微氣候、產生局部的冷卻效應,稱為都市冷島(Urban cooling island),其效應受到公園內部環境(公園面積、形狀、地表覆蓋型等)以及外部環境條件(建成區、其他綠地等)的影響,其作用及降溫效果有待釐清。 遙測(Remote sensing)具全面性觀測之優點,能獲得大範圍的同步資料,至今使用遙測的相關研究大多以表面溫度來探討綠地的冷島效應,惟測量到的是植被的表面溫度,並非植被下方的表面溫度;空氣溫度是探討微氣候的重要條件,其反映了受加熱後的地表與周遭空氣混合後的結果,因此更適合描述公園的降溫能力和流動情形,許多研究使用遙測資料結合空間統計方法推估氣溫,例如地理加權迴歸(Geographically weighted regression),可使用多個自變項與距離進行加權,並配合高解析度的遙測資料,能夠更適當地反映當地的微氣候,有助於釐清公園冷島效應。 因此本研究之目的為: 一、 使用地理加權迴歸及遙測影像資料推估氣溫 二、探討內外環境特性對冷島強度的影響 三、探討內外環境特性對冷島延伸距離及範圍的影響 本研究以台北盆地的62個公園綠地為研究地點,使用Landsat-8遙測影像判斷植被、水體及建成區等地表覆蓋類型並推估地表溫度。而在空氣溫度的推估方面,結合地理加權迴歸,使用現有氣象測站觀測之空氣溫度及遙測資料集,建立其迴歸關係式以推估研究範圍之空氣溫度,並將空氣溫度及表面溫度圖像化、繪製成等溫線圖,將公園綠地內外環境屬性量化,最後以推估的氣溫為應變項、公園內外環境屬性為應變項進行統計分析。 研究結果顯示,都市公園最大可降溫達1.5°C、近山都市公園最大可降溫達1.8°C;都市公園平均降溫距離介於84-472公尺、近山都市公園平均降溫距離介於155-406公尺;都市公園平均降溫範圍15.8公頃;近山都市公園平均降溫範圍19.6公頃。進一部探討環境屬性的影響:公園面積越大、綠覆面積越大,公園的降溫強度越大、降溫距離越遠,因此降溫範圍也越大。而公園的周長面積比越小,意即公園形狀越規則,降溫強度較大、降溫距離越遠,因此降溫範圍也越大。而在外部環境屬性的方面,外部綠覆面積總和與外部平均綠覆面積對降溫強度、距離即範圍都呈現正相關,而外部綠地距離越遠,越能延伸公園降溫效果。

並列摘要


Parks and green lands is main source of Ecosystem in urban area. With climate change and urban expansion goes severe, affecting comfort and living quality of city habitat. Furthermore, Urban park meditate urban micro-climate by canopy direct shelter and evapotranspiration, leading local ‘’cooling island.’’ This effect associate with interior and outer condition in parks and need to clarify. Remote sensing can measure and collect data simultaneously in a large area, thus nowadays there are lots amount of researches using it to get land surface temperature (LST), which helping understand cooling island effect. However, remote sensing measuring the temperature upper canopy rather the surface temperature under canopy. Air temperature is suitable to describe cooling capacity and flow of urban parks. Many researsher start to combine spatial statistics approach, such as Geographically weighted regression (GWR) to estimate the air temperature. To conclude, our purpose are: 1. using GWR and Remote sensing data to estimate local air temperature. 2. Discuss the cooling intensity influenced by interior and outer characteristic of parks 3. Discuss the cooling extent and area influenced by interior and outer characteristic of parks Study area included 62 parks in Taipei Basin, we use Landsat-8 image as material, which identifying vegetation, water body and built area then calculate LST. First, to estimate the air temperature, we use ground meteorological station data and remote sensing data as input in GWR to establish regression model. Second, mapping air temperature, discriminating cooling intensity, extent and area. Third, qualifying interior and outer characteristics of parks. Finally, using cooling indicators as dependent variables and park characteristics as independent variables. The results indicate: cooling intensity maximum of urban parks is 1.5°C, cooling intensity maximum of urban parks which near mountain is 1.8°C; cooling extent of urban parks is average 84-472 meter, cooling extent of urban parks which near mountain is average 155-406 meter; cooling area of urban parks is average 15.8 ha, cooling area of urban parks which near mountain is average 19.6 ha. Otherwise, the larger the park area and canopy is, the more cooling intensity is.

參考文獻


1. 林巧婷,(2015),都市公園空間分布型態對降溫效益影響之研究,碩士論文,國立臺灣大學園藝暨景觀研究所,台北。
2. 郭瓊瑩、王秀娟,(1996),都市公園綠地系統示範地區規劃,內政部營建署,台北。
3. Aboelnour, M., Engel, B. A. (2018). Application of remote sensing techniques and geographic information systems to analyze land surface temperature in response to land use/land cover change in Greater Cairo Region, Egypt. Journal of Geographic Information System, 10(1), 57-88.
4. Arya, P. S. (2001). Introduction to micrometeorology. Elsevier.
5. Assessment, M. E. (2005). Ecosystem and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC.

延伸閱讀