透過您的圖書館登入
IP:18.188.100.179
  • 學位論文

利用電漿子體奈米結構之色彩圖像直接檢測類似病毒的顆粒

Direct Detection of Virus-Like Particles Using Color Images of Plasmonic Nanostructures

指導教授 : 李君浩
共同指導教授 : 魏培坤(Pei-Kuen Wei)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


奈米金屬結構激發表面電漿子共振(Surface Plasmon Resonance, SPR)感測器,具有非標定、高通量檢測特性非常適合化學及生物感測應用,生物樣品常用於金、銀等金屬。因金對生物體本身無毒性,所以適合應用於大量製造拋棄式感測晶片。然而gold金屬具有較小的虛部介電常數及較短的光學消逝波,並可提升金奈米金屬結構的檢測能力以及較低的檢測極限。在本論文中,我們利用射出成形技術製作以聚苯乙烯(polystyrene)聚合物為基板鍍金,形成金奈米金屬狹縫結構(gold-nanoslits)本體。我們進一步使用COMSOL模擬軟體來探討光場現象並觀察gold-nanoslits的光譜趨勢,並鋪上直徑100nm polystyrene球體模擬場型波長位移趨勢以及對比度信號(IGR)。而目前嚴重急性呼吸系統綜合症冠狀病毒-2 (SARS-CoV-2) 的持續全球大流行已導致對其相關診斷和醫學治療的積極研究。雖然定量逆轉錄聚合酶鏈反應 (qRT-PCR) 是檢測SARS-CoV-2病毒基因的最可靠方法,但須要針對特定抗病毒抗體的血清學來檢測,所以費時和耗力。本研究工作中,利用表面電漿子共振成像 (SPRi) 的原理。用金奈米結構的傳感器模擬的病毒大小能夠用於生物醫學應用的無標記檢測。然而,高通量和低成本的製造技術是應該解決的主要問題。gold-nanoslits生物晶片上有25 個陣列的折射率分辨率的變異係數為 0.55%。利用自參考雙色分析可以提高平均可檢測折射率 0.85×10-4 RIU的信噪比,並將檢測極限(LOD)平均值提高到2.96×10-5 RIU。我們開發的金奈米結構的生物晶片之表面電漿子共振成像掃描機線光源平台系統以及智慧型手機OLED-yellow面光源平台都已成功展示對SARS-CoV-2病毒檢測的高度靈敏、快速和低成本的診斷能力。結果表明,目前25孔傳感平台的可檢測折射率變化為2.96×10−5 RIU,SARS-CoV-2 Virus-Like Particles檢測LOD僅在1pg/mL~1ng/mL ≦15分鐘檢測時間和80μL樣品量。以上量測儀器實驗分析有:LED光譜儀分析、LED光源掃描機雙色CCD影像分析、OLED-yellow面光源手機CMOS影像分析。

並列摘要


Surface Plasmon Resonance (SPR) sensors excited by nano-metal structures have non-calibration, high-throughput detection characteristics and are very suitable for chemical and biological sensing applications. Biological samples are often used for metals such as gold and silver. Because gold is not toxic to living organisms, it is suitable for the mass production of disposable sensing chips. However, gold metal has a smaller imaginary dielectric constant and a shorter optical evanescent wave, which can improve the detection capability and lower the detection limit of gold nano-metal structures. This thesis uses injection molding technology to fabricate gold-plated polystyrene polymer substrates to form the gold-nanoslits body. We further use the COMSOL simulation software to explore the light field phenomenon, observe the gold-nanoslits spectral trend, and overlay the 100nm diameter polystyrene sphere to simulate the field type wavelength shift trend and the contrast signal (IGR). The ongoing global pandemic of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to active research on its associated diagnosis and medical treatment. Although quantitative reverse transcription polymerase chain reaction (qRT-PCR) is the most reliable method to detect SARS-CoV-2 viral genes, it requires serology for specific antiviral antibodies, which is time-consuming and labor-intensive. This work utilizes the principle of surface plasmon resonance imaging (SPRi). Virus sizes simulated with gold nanostructured sensors enable label-free detection for biomedical applications. However, high-throughput and low-cost fabrication techniques are the main issues that should be addressed. The coefficient of variation for refractive index resolution of 25 arrays on a gold-nanoslits bio-wafer was 0.55%. The use of self-referencing two-color analysis can improve the signal-to-noise ratio of the average detectable refractive index of 0.85×10-4 RIU and the limit of detection (LOD) average to 2.96×10-5 RIU. The surface plasmon resonance imaging scanner line light source platform system of the gold nanostructured biochip and the smartphone OLED-yellow surface light source platform has successfully demonstrated the sensitive and rapid detection of the SARS-CoV-2 virus. And low-cost diagnostic capabilities. The results show that the detectable refractive index change of the current 25-well sensing platform is 2.96×10−5 RIU, and the detection LOD of SARS-CoV-2 Virus-Like Particles is only 1pg/mL~1ng/mL≦15min detection time and 80μL sample size. The experimental analysis of the above measuring instruments includes: LED spectrometer analysis, LED light source scanner two-color CCD image analysis, and OLED-yellow surface light source mobile phone CMOS image analysis.

參考文獻


[1] Takemura, K., Ganganboina, A. B., Khoris, I. M., Chowdhury, A. D., Park, E. Y. (2021). Plasmon nanocomposite-enhanced optical and electrochemical signals for sensitive virus detection. ACS sensors, 6(7), 2605-2612.
[2] Chu, X., Lin, Z. H., Shen, G. L., Yu, R. Q. (1995). Piezoelectric immunosensor for the detection of immunoglobulin M. Analyst, 120(12), 2829-2832.
[3] Gauglitz, G. (1996). Opto-chemical and opto-immuno sensors. Sensors update, 1(1), 1-48.
[4] Connolly, J., St Pierre, T. G. (2001). Proposed biosensors based on time-dependent properties of magnetic fluids. Journal of Magnetism and Magnetic Materials, 225(1-2), 156-160.
[5] Liu, F., Zhang, X., Li, K., Guo, T., Ianoul, A., Albert, J. (2021). Discrimination of bulk and surface refractive index change in plasmonic sensors with narrow bandwidth resonance combs. ACS sensors, 6(8), 3013-3023.

延伸閱讀