電源門控能有夠效地降低漏電功耗,並已經成為業界流行的多閾值CMOS(MTCMOS)設計。然而,當開啟使用MTCMOS開關的電路時可能會出現一個大的湧入電流和動態電壓降 (IR drop)。這可能反過來導致電路的誤動作。在本論文,我們提出了一個新的系統架構,用來產生一個適當的電源開關的順序以控制電源門控領域 (power-gated domain) 的湧入電流,同時能大幅度地減少電源開啟的時間和減少活動域 (active domain) 的動態電壓降。我們還提出了一個可編程的骨牌式延遲電路來產生電源開關控制信號。根據一個先進的工業設計的實驗結果顯示,我們所提議的系統架構可以成功地限制湧入電流、大限度地減少開機時間並減少動態電壓降。結果進一步驗證了我們所提議的系統架構在處理超過八萬個電源開關和十億個電晶體以上之大型設計的效能。
Power gating is effective for reducing standby leakage power as multi-threshold CMOS (MTCMOS) designs have become popular in the industry. However, a large inrush current and dynamic IR drop may occur when a circuit domain is powered up with MTCMOS switches. This could in turn lead to improper circuit operation. In this thesis, we propose a novel framework for generating a proper power-up sequence of the switches to control the inrush current of a power-gated domain while minimizing the power-up time and reducing the dynamic IR drop of active domains. We also propose a configurable domino-delay circuit for implementing the power-up sequence. Experimental results based on state-of-the-art industrial designs demonstrate the effectiveness of the proposed framework in limiting the inrush current, minimizing the power-up time, and reducing the dynamic IR drop. Results further confirm the efficiency of the framework in handling large-scale designs with more than 80 K power switches and 100 M transistors.