比較不同類型的電容,包含金屬氧化物半導體電容和金屬-絕緣體-金屬電容,相比之下金屬-氧化物-金屬電容透過金屬互連來實現,具有低漏電流、較低製造成本和更高電容密度的優勢。然而,之前大部份研究共同質心電容擺放和繞線的研究都沒採用金屬-氧化物-金屬電容,導致電容的密度、佈局面積和數據轉換器的功率消耗都不是最佳的。在本論文中,我們首先分析和比較目前數據轉換器中最常見的金屬-氧化物-金屬電容結構。根據分析和比較的結果,我們進一步提出的榫卯結構,不只可以達到更小的寄生和更高的電容密度,同時也能自動佈局合成和優化低功耗數據轉換器高密度共同質心金屬-氧化物-金屬電容陣列。實驗結果顯示,我們提出的金屬-氧化物-金屬結構和佈局合成方式可以產生用於數據轉換器的高度匹配比例電容和較小的佈局面積和更低的功率消耗。
Compared with different types of capacitors, including MOS capacitors and metal-insulator-metal (MIM) capacitors, the metal-oxide-metal (MOM) capacitors, which are realized through metal interconnections, have the advantages of less leakage current, lower fabrication cost, and higher capacitance density. However, most of the previous work on common-centroid capacitor placement and routing did not apply MOM capacitors resulting in sub-optimal solutions in terms of capacitance density, layout area, and power consumption of the data converters. In this thesis, we first analyze and compare most of the commonly applied MOM capacitor structures for data converters. Based on the analysis and comparisons, we further propose the mortise-and-tenon structure not only to achieve even smaller parasitic and higher capacitance density but also to enable automatic layout synthesis and optimization of high-density common-centroid MOM capacitor arrays for low-power data converters. Experimental results show that the proposed MOM structure and layout synthesis approach can produce highly matched ratioed capacitors for data converters with much smaller layout area and lower power consumption.