透過您的圖書館登入
IP:3.133.109.30

臺灣師範大學地球科學系學位論文

國立臺灣師範大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

西太平洋暖池為全球重要的熱量及水氣來源,為了解西太平洋暖池較長時間尺度的變化,本研究選擇ODP180航次於西太平洋暖池南緣所羅門海域鑽取的1115B岩芯進行浮游性有孔蟲Globigerinoides sacculifer氧碳同位素分析,建立本區域2.2百萬年以來之古海洋記錄。本岩芯有孔蟲氧同位素記錄反覆出現冰期-間冰期的震盪變化,與Shackleton 等人(1990)發表ODP677底棲有孔蟲氧同位素相似,顯示其氧同位素值的變化主要受冰川消長控制。依據氧同位素值比對,輔以生物地層、古地磁反轉事件,以及亞澳微雷公墨出現層位作為年代參考點,建立了西赤道太平洋2.2百萬年以來氧同素地層第1階至第81階的記錄以及本岩芯之年代模式。岩芯的平均沉積速率為5.8cm/kyr,且呈現沉積速率減緩但碳酸鈣比例增加的趨勢,可能與Woodlark Basin的張裂活動所伴隨的海水深度逐漸增加有關。 本岩芯氧同位素年代地層從100kyr週期所過濾出來之濾波則顯現出隨時間變化而有不同之強度,從一百萬年左右開始,氧同位素的100kyr週期成為主要控制週期,且在五十萬年之後到現代,100kyr週期更加明顯,與前人所提到的MPR及MBE事件的特徵吻合,顯示本岩芯適合作為研究此兩事件的材料。 在本岩芯中觀測到δ13C數值自氧同位素第13階的極大值1.5?下降至第12階的0.4?,早於氧同位素地層第11階與12階之間的MBE事件的現象,與Wang等人(2003)於南海岩芯中觀測到結果相似,顯示全球碳儲存庫的擾動可能扮演全球氣候變遷的關鍵因素。但本岩芯碳同位素呈現的變化量,與Wang等人(2003)於南海觀測到的變化量並不完全相同,表示碳同位素記錄具有區域性的差異。 本岩芯與ODP806岩芯浮游有孔蟲G. sacculifer氧同位素差值自2.2Ma到1.7Ma逐漸減少,自1.7Ma到現代則相對平穩振盪,推測1.7Ma之後,暖池在垂直水體已發展成現代的模式。而本岩芯的氧同位素與岩芯ODP806氧同位素差值呈現明顯地軸傾斜角變化41ky,可能因地軸頃角較小時,南半球中緯度海環環流增強,導致暖水水團疊加至暖池地區,使暖池範圍變大。本研究之浮游有孔蟲氧同位素記錄與全球冰川體積發展有良好的對應,與暖池核心的岩芯ODP806浮游有孔蟲G. sacculifer氧同位素比較顯示水文狀況較暖池中心不穩定,暗示暖池南緣自上次冰期以來鹽度增加,而此效應可能來自蒸發量的增加或因ITCZ偏移所造成的降雨量減少。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

東久-米林剪切帶為東喜馬拉雅構造結之西界斷層,東喜馬拉雅構造結自早新生代印歐板塊碰撞事件以來,一直處於一個地體碰撞樞紐地帶,而地表斷裂與強烈變形作用也深受其影響。前人曾探討此構造結之形成過程與機制,但也都未能全然的了解此地區複雜的地體架構模式。為釐清東喜馬拉雅構造結形成之過程,本研究選定其西界之東久-米林剪切帶,藉由野外調查、顯微構造之葉理分析以及葉理交軸分析,並配合 40Ar/39Ar 定年法來探討此剪切帶構造演化與熱事件過程,以期能更進一步瞭解東喜馬拉雅構造結的形成機制。 初步分析結果顯示此區域構造作用可分為三期塑性變形事件 (D1、D2、D3) 與最後一期的脆性變形事件 (D4):第一期變形作用 (D1) 為早新生代印歐板塊聚合作用而造成平行於剪切帶之同斜褶皺 (Isoclinal fold),褶皺軸面 (S1) 走向北偏東30~50°向西北傾約60~70°,並呈現西北-東南向 bulk shortening,shear sense 顯示出左剪壓縮作用,是為剪切帶主要形成之作用期。第二期變形作用 (D2) 介於早新生代印歐板塊碰撞與 20.1±0.2Ma 之間,主要產生趨水平向偃臥褶皺 (Recumbent fold),褶皺軸面 (S2) 走向為北偏東 20~70°向西北傾約 5~40°,shear sense 顯示出近水平向東南逆衝作用,可能於此時期岩圈在 D1 後因西藏高原增厚並造成重力垮塌之循環作用。第三期變形作用 (D3) 主要產生平行於剪切帶東北-西南走向的葉理 (S3;N23~45°E;NW65~85°),呈高角度向西北傾,shear sense 呈現右剪壓縮之剪動方向,並造成剪切帶在 20.1±0.2~11.4±0.1Ma 由南往北不同時剪動抬升,並認為東南亞早在 20Ma 則開始以東喜馬拉雅構造結順時針旋動。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

我們藉由研究宇宙間的大尺度結構(如星系團或星系團合併)與 Chandra Deep Field South(CDFS)觀測到的不同類型活躍星系核(AGN)之間的關聯,探討 AGN 的演化受到周圍環境影響的程度。在本研究中 AGN資料是由 CDFS 及 Extended-CDFS(E-CDFS)X射線源合併而來的,所有可分析的 AGN 共 889 筆;而可見光星系目錄是具有多波段觀測及光度紅移的 COMBO-17 觀測資料,在我們所分析的紅移範圍中(z = 0.2 ~ 1.2)共約有 11,500 筆。透過星系–AGN 二點交互相關函數分析、星系二維密度分析以及分析實際以 Friend-of-Friend(FoF)星系團尋找演算法找到的高密度星系區周圍 AGN 分佈,我們發現 Type 1 AGN 與高密度星系區的中心部分關聯性較強;且在這個區域 Type 1 AGN 與星系的比例,存在高於平均比例的趨勢。而關於 Type 2 AGN 大量出現在低紅移處的原因,應該也與高密度星系區有關。在不同的分析下,我們都看到 Type 2 AGN 與成團星系結構存在關聯性。另外,在距離高密度星系區中心 0.5 Mpc 之外圍區域,Type 2 AGN 出現的機率高於 Type 1 AGN,而且我們同樣也在高密度星系區周圍(~ 0.5 Mpc)看到 Type 2 AGN 與星系的比例具有高於平均比例之趨勢。這代表宇宙間可能存在許多尚未觀測到的大尺度結構(由較暗的星系組成),而大尺度結構內星系因為彼此的交互作用而產生大量的 Type 2 AGN。雖然在探討更大尺度的環境(如星系團合併)與 AGN 演化的關聯分析中,由於分析資料的限制,因此沒有具體的證據支持 AGN 的演化受更大尺度環境影響;但在星系團(群)尺度下,我們的結果顯示 AGN 的演化確實受到高密度星系區的影響。我們的結果可提供關於研究 AGN 的演化起源問題的參考,而未來更多深空的觀測也許可以提供我們檢視這些與 AGN 有關聯的大尺度結構之特質,以更進一步了解環境如何影響 AGN 演化的問題。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究主要探討台中地區(包含濱海平原與台中盆地),於第四紀之沉積環境變遷與其在大地構造上之意義。本研究之研究材料主要為經濟部中央地質調查所於本區域鑽探的岩心,包括濱海平原區的華龍、三光、高美、清水、梧棲、忠和、大肚、伸東及全興井;加上位於台中盆地內的烏日及大里,共11口井。本研究藉由記錄岩心組成顆粒與沉積構造,利用沉積學原理與相模式,分析岩心之岩相組合,解釋沉積環境;再藉由層序地層學原理,進行各井對比並劃分層序,建構台中地區的地下地層與沉積環境變遷模式。對比濱海平原跟台中盆地兩區之古沉積環境,可發現濱海平原區的沉積主要受沉積物供應、全球海水面升降與構造運動(台地隆起時造成之沖積扇)控制;而台中盆地中只有辮狀河平原的沉積環境。 從現代大肚溪河系分布可發現,台中盆地內所有大肚溪支流都至烏日匯聚成大肚溪主流才出盆地,而烏日岩心從底至頂也一直出現辮狀河沉積環境,與現代情形相符。由於大肚井岩心中,山前沖積扇和辮狀河環境交替出現,代表在大肚台地隆起時,大肚溪即在此發育,因此應為先成河,再加上後成影響(在台地抬升同時加速下切),持續由大肚台地與八卦山台地交接處流出盆地。另外,比較大肚、烏日、大理岩心的沉積環境相變情形,推斷大肚溪三角洲可能由於水流量較小且台中盆地仍未被沉積物填滿,使大肚溪沉積物大部分沉積於台中盆地,造成大肚溪在濱海平原區的三角洲較不易發育。 劃分高美、清水、梧棲、忠和、大肚、全興與伸東7口井的層序並對比後,建構出濱海地區晚第四紀以來沉積環境變遷模式如下: 1. 海進面時期(8234至32710年前之間) –此時為海進面,海岸線較現今更向西,區域內沉積環境大部分為辮狀河平原。 2. 海進體系域時期 –此時期相對海水面持續上升,海岸線向東遷移,沉積環境從河口灣轉變為濱面與潮坪,為海進體系域。 3. 最大海漫面時期(2866至6397年前之間) –此時為最大海漫面(MFS),海岸線到達此次沉積層序中最東側,沉積環境除了最東側為潮坪環境以外,大部分為遠濱過渡帶。 4. 高水位體系域時期 –相對海水面開始下降,海岸線逐漸向西遷移,全區沉積環境由遠濱過渡帶轉變為濱面以及潮坪,形成高水位體系域(HST)。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

A multiple grid-size nesting ocean model system is developed in this work to perform studies on the variations of the flow in the Taiwan Strait and the Kuroshio east of Taiwan. The transport in the Taiwan Strait is studied using the East Asian Marginal Seas (EAMS) model. Three model experiments using different wind data sets (ERA40, NCEP Reanalysis version 2, and QuikSCAT/NCEP blend wind) were performed. Model experiments suggested that the best simulation is achieved when the model is driven by the QuikSCAT/NCEP blend wind forcing. Involving the strong wintertime southward flow events in the Taiwan Strait, the annual averaged modeled transports through the Taiwan Strait is 1.09 Sv (1 Sv=106 m3/s). The result suggests that shipboard Acoustic Doppler Current Profiler (sb-ADCP) observations are biased toward estimates in summer and fair weather since bad weather during the winter northeast monsoon often prevents seagoing observations. Linear regression lines are also proposed to give simple relations between transport and wind stress for roughly evaluating the transport through a known wind stress value. The spatial and temporal variations of the Kuroshio east of Taiwan are investigated using model outputs, surface drifter trajectories, satellite-based altimetric data, and wind data. From the simulation of the EAMS model over a span of 24 years from 1982 to 2005, the variability of the Kuroshio east of Taiwan is studied in detail. Between 22 and 25°N, the mean state and variability of the Kuroshio, such as the two paths observed in the trajectories of surface drifters southeast of Taiwan and the branching of the Kuroshio northeast of Taiwan, are well reproduced by the model. Southeast of Taiwan, the Kuroshio is mostly in the top 300 m in the inshore path but extends to 600 m in the offshore path. Northeast of Taiwan, the Kuroshio follows the shelf edge in the East China Sea, but sometimes branches along a path south of the Ryukyu Islands. The latter path often meanders southward, and a significant portion of the Kuroshio transport may be diverted to this path. The Kuroshio extends from the coast to 123°E ~ 123.5°E between 22°N ~ 25°N with currents reaching a depth of 1000 m at some latitudes. The Kuroshio transports averaged over five sections east of Taiwan are 28.4 ± 5.0 Sv and 32.7 ± 4.4 Sv with and without the contribution from the countercurrent, respectively. Using satellite data and the Seas Around Taiwan (SAT) model simulation, the intra-seasonal variation of the Kuroshio southeast of Taiwan is further studied. Superimposed with the main stream of the Kuroshio, two intra-seasonal signals longer than 2 weeks are revealed in the study region, 20 ~ 30 days and 40 ~ 90 days. The variation of 20 ~ 30 days is only significant between Taiwan and the Lan-Yu Island. A mechanism is proposed to describe how the wind stress curl in the northeastern South China Sea modulates the circulation southeast of Taiwan on this timescale. The fluctuation with a longer period of 40 ~ 90 days is resulted from the westward propagating eddies.

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

象背山變質岩帶 (Day Nui Con Voi metamorphic belt) 位於越南北部,為哀牢山紅河剪切帶 (Ailao Shan-Red River shear zone) 之最南段。變質岩帶東北、西南兩側各以齋河斷層 (Song Chay Fault) 與紅河斷層 (Song Hong Fault) 為界,主要葉理面呈西北-東南走向,傾向東北,野外測量之傾角約為70~80°,水平線理發育良好,運動特徵為左移剪切。前人研究認為哀牢山紅河剪切帶的左移活動引發南海的張裂,因此象背山變質岩帶受到橫移拉張的應力所控制。為深入探討其應變模式,本研究於象背山變質岩帶採集26顆定向岩石標本,並且製作XZ與YZ面之顯微薄片,測量岩石中變形之石英與長石礦物進行Rf/ψ應變分析,配合上立體應變橢球的重建與渦度的計算,分別以橫剖面與縱剖面進行討論。結果顯示象背山變質岩帶受到純剪 (pure shear) 為主的橫移壓縮影響,應變量集中在背斜構造之兩翼,呈現雙剪切的構造,立體應變橢球型態則以扁圓形為主(k<1)。主要應變三軸位態大致相互垂直,最大拉張方向之X軸在全區皆呈現西北-東南向近水平之位態,惟Z軸之方向由北段東北-西南向近水平的擠壓,向南逐漸轉為近垂直之擠壓力,顯示象背山變質岩帶於河內以南所受的應力以重力為主,側向之擠壓力則較弱。根據本研究結果重組之3D應變與應力史顯示,象背山變質岩體應先受到垂直之純剪導致水平剪切帶的發育,再經由東北西南向的擠壓伴隨哀牢山紅河剪切帶的左移與穹丘構造事件抬升至地表。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

學生在進行學習之前,具有的前備知識(prior knowledge),因受限於本身經驗與個別推論,有別於專家所持有的科學概念 (Osborne & Gilbert, 1980)。學生所發展出來的概念是不完整,甚至是不正確的,此稱為迷思概念(Driver & Easley, 1978; Clark & Peterson, 1986)。這些概念很難藉由學習加以改變,往往形成學習的絆腳石,阻礙學習的進行(Vosniadou &Brewer, 1992)。 為了有效改變學生所具有的迷思概念,許多的教學策略被提出來以促進學生進行概念改變(何玉婷, 2005)。諸多促進概念改變的教學策略裡,常見的認知衝突策略是使用異例(anomaly)、類比(Duit, 1991; Gentner, 1998)、電腦模擬教學以及TEL model課程設計模式(Hsu, Ying-Shao, Wu, Hsin-Kai & Hwang, Fu-Kwun, 2008)。本研究以彰化縣某國中二年級兩個常態班級的學生為研究對象,試圖探討國中二年級學生在進行「月相盈虧成因課程」前後概念改變情形,並了解不同空間能力的學生概念改變的差異情形。 首先,研究者以「月相盈虧成因診斷測驗」分析國中二年級學生在進行課程前所具有的月相盈虧成因迷思概念,並在課程後測探討「月相盈虧成因課程」對學生學習月相盈虧成因概念改變的情形。 研究獲得以下結果: 1. 學習前學生的概念模式有七種。科學模式解釋月相盈虧成因的學習者有5位;在迷思概念類型中有9位以月食的模式來解釋月相盈虧成因,而有10位同學以位置模式解釋月相盈虧成因,最後有4位以混合模式解釋月相盈虧成因。 2. 學生在教學後較多人呈現出部份或完整的科學概念。 3. 學生在經過課程之後仍持有迷思概念,其中月食模式的學生最多(3位)。 4. 高、低空間能力學生在經過月相盈虧課程之後概念有顯著改變,顯示課程教材對高、低空間能力學生獲得較顯著的成效。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

摘要 本研究利用三維擾動能量診斷及高解析度ECHAM4.6 T106數值模式研究聖嬰、西北太平洋大尺度環流場和熱帶風暴間的交互作用。研究結果發現,當七至九月Ni?o3.4區域的海溫增暖時(暖聖嬰年),伴隨季風槽與低層西風之增強和向東南延伸,西北太平洋熱帶風暴之生成區域亦向東南發展。低層之擾動正壓能量轉換和高層之擾動斜壓能量轉換均增強,此兩能量轉換之正距平自130°-150°E菲律賓海向換日線延伸。而西北太平洋地區正壓和斜壓能量轉換的增強,主要與熱帶中東太平洋海溫正距平引發之氣旋式距平、向東延伸的西風噴流和上升運動有關。大尺度環流場的變異、擾動正壓和斜壓能量轉換的增強共同有利於熱帶風暴生成區向東南的發展。 暖年時,西北太平洋之副熱帶和中緯度地區為反氣旋式距平及下沈運動盤據,此大尺度環流之配置並不利於擾動正壓能量轉換。當西北太平洋地區之熱帶風暴移行至20°N以北時,支持熱帶風暴持續發展和增強之能量來源為較強的擾動斜壓能量轉換。而斜壓能量轉換將擾動可用位能轉至擾動動能後,損失的擾動可用位能可經由擾動本身之非絕熱加熱效應產生,或經由擾動熱能垂直傳輸,將平均可用位能轉換至擾動可用位能。而後者之能量轉換機制在二維之擾動可用位能診斷中無法顯現。綜合擾動能量診斷之結果可知,暖年時,大尺度環流場及對應之擾動正壓能量轉換有利於熱帶風暴生成區向東南發展,而熱帶瞬變擾動(包含熱帶風暴)可經由擾動本身非絕熱加熱及斜壓過程,得以自我發展並增強。 為進一步釐清與聖嬰有關的海溫變異、大尺度環流場和擾動能量過程三者間之主動和被動關係,本研究採用高解析度ECHAM4.6 T106進行三組數值實驗。控制實驗以全球觀測海溫驅動ECHAM4,此模式成功模擬140°E 以東之大尺度環流場以及熱帶風暴生成、頻率的年際變化。數值實驗的結果顯示,赤道中東太平洋海溫的增暖於大尺度環流場及熱帶風暴年際變化上扮演一主動角色,其於西北太平洋上產生氣旋式環流和強西風距平,有利擾動正壓及斜壓能量轉換增強,支持瞬變擾動(包含熱帶風暴)生成及發展。 然而,赤道西太平洋之冷卻效應則會使得由中東太平洋暖海溫引發之低層氣旋式環流和西風噴流之強度減弱。 ECHAM4 T106對熱帶風暴強度的模擬明顯低估,此誤差可能來自其解析度的不足,而限制了模式中瞬變擾動(包含熱帶風暴)的自我成長過程,並進而降低模式裡瞬變擾動與大尺度環流場之間的交互作用。提高模式的解析度和/或採用海氣耦合模式可能有助改進模式內擾動場之非絕熱釋放過程,以及擾動非絕熱加熱對熱帶風暴強度、路徑和大尺度環流場影響之模擬。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

2006年6月8日至6月11日梅雨鋒面滯留於台灣地區,在6月9日帶來大量的降水,造成中南部地區有嚴重的水災以及造成許多農作物的損失。為了解造成豪雨的原因以及鋒面滯留、北退的情況,我們使用WRF模式模擬此個案,分為兩個部份,第一部分初始時間為2006年6月8日0600 UTC(Run1),分析鋒面降水、滯留、北退的情形。第二部分初始時間為2006年6月9日1200 UTC(Run2),分析鋒面消散的過程。 從綜觀環境、水平風場、台灣東西兩側鋒面結構以及西南氣流的垂直剖面、加上風場和氣壓場隨時間的變化等獲得結論如下:造成強降水的原因有低層輻合高層輻散、西南氣流帶來暖濕的水氣,加上鋒前屬於對流不穩定區,當鋒面南移激發對流的產生,因而在9日上午於中部地區造成豪雨。而在鋒面北退期間,西北風分量減弱,即東南風分量增強而使得鋒面有短暫北退的情形。到了對流後期時,由於低層噴流(LLJ)東移,鋒面也移至南部地區,而使得降水多集中在南部,直到LLJ減弱,南來的水氣減少,供應鋒面輻合所需的水氣下降,因而對流帶逐漸消散。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

傳統潛在可預報度之分析主要以大氣環流模式(Atmospheric general circulation model;簡稱AGCM)資料作為評估的依據。然而,AGCM往往因為海洋與大氣之間並無能量交換,而高估了降水以及環流的強度,由此可知海氣交互作用所扮演之重要角色。另一方面,潛在可預報度主要在評估模式大氣對於邊界驅力的反應程度,然而,海氣耦合模式中,邊界條件與初始條件會隨著時間不斷改變,這將使利用海氣耦合模式進行潛在可預報度分析的難度提高。基於上述理由,為了釐清海氣交互作用對於潛在可預報度之影響,本研究將透過實驗設計,探討局部海氣交互作用對於潛在可預報度之影響。 研究發現,當赤道海溫變化明顯時(如ENSO期間),CTRL與MLM實驗中均顯示較高之潛在可預報度,其中又以赤道地區最為顯著;中高緯度地區,則是以PNA地區較為明顯。在季節的變化上,則是以冬季時有最高之潛在可預報度。這些結果與前人利用AGCM進行潛在可預報度分析所獲得之結論一致,換言之,即使海氣交互作用存在,大氣潛在可預報度的變化依然以ENSO年較高,所有年次之,非ENSO居後的形式呈現。由此可知,實驗中DTEP地區的海溫變化仍是主要影響全球大氣潛在可預報度的驅力。 MLM與CTRL實驗差別在於MLM實驗中允許有海氣交互作用,此作用的存在,造成二組實驗之潛在可預報度存在著些微的差距,而此些微差距透過Monte-Carlo的檢驗方式獲得信心。從變異數分析研究訊號與雜訊的結果發現,海氣交互作用的影響存在著明顯的區域性和季節變化。冬季的反應較夏季明顯。其中太平洋與大西洋的季節變化相對較大;印度洋地區則是以減弱潛在可預報度為主。 至於海氣交互作用影響潛在可預報度的運作過程,則可透過暖年減冷年合成圖進行解釋—在海氣交互作用顯著區域,大氣對於DTEP地區海溫變化一旦產生反應,局部地區的海氣交互作用即開始扮演修飾此反應的角色。修飾的作用主要有二,其一為透過熱通量之交換提供負貢獻至大氣,此作用將造成潛在可預報度之減弱;其二為維持環流強度,此作用將使MLM實驗組的潛在可預報度高於環流強度迅速減弱的CTRL實驗。 本研究比較了AGCM與耦合模式之潛在可預報度,其中使用之耦合模式為AGCM外加一混合層模式,忽略了海洋動力的影響。在未來,若能設計一組實驗,使DTEP地區以外的海洋與大氣為真正之耦合作用,將能增進海氣交互作用對於潛在可預報度影響之了解。此外,若能再加入一組AMIP方式之模擬資料,將有助於釐清海氣交互作用對於潛在可預報度之真正影響。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。