透過您的圖書館登入
IP:18.117.73.214

中央大學材料科學與工程研究所學位論文

國立中央大學,正常發行

選擇卷期


已選擇0筆
  • 學位論文

近年來文獻指出二氧化鈦與四氧化三鈷皆具有類似過氧化物物質催化活性(peroxidase activity),可將過氧化氫與不同的指示劑中進行本質類過氧化物催化,如TMB。有機物分解過程中時常會產生過氧化氫,例如葡萄糖氧化酶(GOx)可將葡萄糖氧化成葡萄糖酸與過氧化氫,利用比色法可以有效的偵測葡萄糖濃度。而且鈦-鈷金屬氧化物利用此催化作用於暗室下,在降解有機染料部分於本研究中有著顯著的效果。本實驗主要要探討與尋找最佳參數之鈦-鈷金屬氧化物本質催化有效地進行葡萄糖檢測與RhB有機染料降解。 本研究以靜電紡絲法控制鈷鈦金屬離子莫爾數比,製備出直徑範圍150~250nm的一維奈米結構,並利用XRD, SEM, TEM進行材料分析。其中Co2TiO4有優異的本質過氧化酶活性,研究發現其會在本質催化反應的過程中分解出同為過過氧化物酶物質之CoTiO3 和Co3O4,使其在反應過程中會因分解進而有更大表面積,使得其在葡萄糖檢測及染料降解有相當大的潛力。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

矽塊材在室溫下為高熱導率材料,熱導率約為150 W/m-K,導致矽塊材ZT值只有0.01,為不良的熱電材料,降低矽的熱導率才能提升ZT值,因此,一維奈米結構成為熱門的研究。相較於塊材,一維矽奈米線結構表面容積比大,聲子傳遞受到侷限,導致聲子散射,有效降低熱導率。本研究使用低摻雜p-type及重摻雜n-type (100)矽晶片,以金屬輔助化學蝕刻法(Mental-assisted chemical etching)製成單晶粗糙的矽奈米線,直徑約為150-250nm,熱導率明顯下降,經氧電漿蝕刻,低摻雜奈米線電導率電導率會上升。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

能源是現今最重要的問題之一,為了有效地利用能源,已經有很多研究在尋求更好的熱電轉換應用的新材料。熱電是熱和電之間的轉換,“熱電材料”用於描述那些擅長將熱轉換成電能的材料,通過熱電材料的熱電轉換效率,將廢熱轉換為電能,可以改善溫室氣體排放的問題,因此,熱電轉換元件可以解決當今面臨能源短缺的這一大問題。近年來,低維度半導體材料被證明是相當有潛力的熱電材料,為了研究一維熱電材料性質,我們製作出懸浮的熱電感測元件以及利用無電鍍金屬輔助蝕刻合成出一般及重摻雜的矽單晶奈米線,奈米線以顯微操作的方式放置於元件上,量測之後發現,有大量孔隙的重摻雜矽奈米線比起輕摻雜奈米線具有較低的熱導與席貝克常數,導致較高的熱電優質。因此,我們嘗試以表面粗糙度和矽奈米線的孔隙率來解釋這些結果是因金屬輔助化學蝕刻過程所引起的。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

鍺化鎂 (Mg germanide) 是應用在中溫區間的熱電材料,由於具有窄能隙特徵、高成本效益、對環境較無害、組成元素蘊藏量豐富,被認為是具有潛力的熱電材料。本實驗利用靜電紡絲法 (Electrospinning method) 搭配高真空熱阻式蒸鍍系統 (Thermal Coater System) 分別鍍上鎂、鍺薄膜,藉由調變鎂和鍺沉積的薄膜比例,製備出鍺化鎂的一維奈米結構,並探討不同比例在300~600 K區間的熱電性質 (Thermoelectric properties)。 由靜電紡絲法製備的PVP奈米纖維在熱蒸鍍過程作用為模板,可經過熱退火移除並留下溝渠形貌的鍺化鎂薄膜。當材料電導率上升,熱導率也會上升,因此無法藉由單純的提升電導率來增加ZT值,製備成一維的奈米結構後,利用材料的表面散射 (surface boundary scattering) 和晶界散射 (grain boundary scattering) 的機制已經是一個有效降低熱導率的方法,由不同元素組成的鎂鍺化合物,合金散射 (alloy scattering) 對於阻礙高頻聲子更扮演了重要的角色,控制厚度比例製備出三種不同的奈米溝渠分別是鍺化鎂 (Mg2Ge)、鍺化鎂+鍺複合相 (Mg2Ge+Ge) 以及鍺化鎂+鎂複合相 (Mg2Ge +Mg),而鍺化鎂+鍺複合相 (Mg2Ge+Ge) 奈米溝渠其ZT值在600 K時達到0.45。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

態氧化物燃料電池電解質材料之化學穩定性、燒結緻密性、相均勻性以及離子傳導性,本實驗利用溶膠-凝膠製備以BaCe0.8Y0.2O3-δ為基礎之電解質材料,此氧化物在中溫(600-800℃)範圍內具有穩定之質子傳導性,但由於此材料之高溫化學穩定性及燒結緻密性不佳,因此必須添加Sr及Zr來抑制生成不純相,為了增進燒結緻密性,故本研究利用成分交換法均勻混合Ba1Ce0.8Y0.2O3-δ及Ba0.6Sr0.4Ce0.4Zr0.4Y0.2O3-δ,於1600℃下燒結4小時,使成分均勻擴散形成單相Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ,並觀察其顯微結構以及利用拉曼圖譜分析此材料於高溫CO2環境下之化學穩定性,並作成單電池Pt /電解質/ Pt測量電解質之電導率及電池能量密度。之後以陽極支撐的方式製作電池,將電解質減薄至50 μm以下,縮短質子傳遞路徑,另外加入陽極功能層(functional layer) SrCe0.8Y0.2O3-δ奈米纖維結構來達到增加陽極與電解質間之表面積,以利燃料催化得更完全,進而提升電池電化學表現及能量密度。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

多晶矽太陽能電池因為在成本與效能間的優異平衡下成為目前光伏產業中的主流產品。為了提升轉換效率,除了考量半導體材料本身的物理特性或材料內部缺陷等因素外,如何能夠最有效的利用電池所接收到的入射太陽光成為提升太陽能電池效能的重要課題。傳統上是以鹼金屬溶液對單晶矽太陽能電池進行表面粗糙化處理。但此蝕刻液會在多晶矽的晶界處發生裂縫與不理想的階梯狀結構使其抗反射效果不佳。此外由於晶面的選擇性蝕刻而產生外觀上的顏色不均勻則在商業應用上有美觀的疑慮。 因此本研究結合 HNO3/HF 濕蝕刻和 SF6/O2 反應式離子蝕刻 (RIE) 對多晶矽太陽能電池表面製備微米-奈米尺寸的抗反射結構。並藉由調整製成參數如:壓力、混和氣體比例和射頻功率以獲得具備外觀色澤均勻同時保有低反射率的最佳化蝕刻結構。相較於只以酸蝕刻進行粗糙化處理的標準試片,具有最佳化 RIE 織構的多晶矽太陽能電池其照光下的短路電流增加 2.04 (mA/cm2)。且由於光捕捉 (light trapping) 效應的貢獻使光電轉換效率提升 2.58%。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究在探討關鍵性電化學與光電化學的電極儲能材料,研究目標有三: (1)依Pechini法合成Ruddlesden-Popper (RP)結構之RP-LaSr3Fe3-xMxO10(MX = Co0~1.5或Mn0~0.5)錳鈷摻雜物,並探討其對氧還原反應 (Oxygen reduction reaction, ORR) 與氧氣釋出反應 (Oxygen evolution reaction, OER)之催化活性。(2) 以簡單之沉積退火法(Deposition-Annealing method, DA),探討製備赤鐵礦製程參數,以獲致最佳光陽極之條件。(3) 結合第(1)、(2)技術,將RP-LaSr3Fe3-xMxO10裝載於最佳赤鐵礦製備光陽極,探討是否會增進光電化學分解水之效率。 結果顯示: (1) RP-LaSr3Fe3-xMxO10(M = Co, Mn)之ORR/OER催化活性高於純RP-LaSr3Fe3O10,摻鈷之樣品效率更高於摻錳者,尤其摻鈷量在x=1.5催化活性最高,在定電流ORR(3 mA/cm2 )/OER(10 mA/cm2)下之電位差值(ΔE) 約為0.93 V,比文獻值(1.00 V~1.16V)小,顯示雙催化效率更極佳。(2) 以前驅物在5 mM進行10次沉積退火(即10 DA)所得之赤鐵礦光陽極,其光暗差電流最佳(即照光電流-暗室電流),可達6.3 mA/cm2。 (3) 裝載RP-LaSr3Fe1.5Co1.5O10之赤鐵礦光陽極,可藉RP-LaSr3Fe1.5Co1.5O10提升OER催化效率,因而增進光陽極之水分解效率,光暗差之電流提升約108%。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究從鋅空氣電池電解質的觀點切入,目的為解決鋅陽極在充放電過程中形成枝晶狀結構、在鹼性水溶液中易腐蝕及提升循環效率等問題。在含有25 g/L氧化鋅之6 M氫氧化鉀溶液中,加入3000 ppm不同添加劑,結果發現添加酒石酸者,可使循環效率從75.3 %提升至83.8 %為最多。 表面型態方面,添加檸檬酸者經過循環充放電後,鋅晶粒無明顯枝晶狀結構出現。添加CTAB、PEG 600與PEG 1000較有助於細化電極表面生成的鋅晶粒,抑制形成枝晶狀結構;XRD分析結果也同時發現,其鋅晶粒之(002)結晶面繞射強度較無添加劑者低。 在腐蝕抑制方面,從極化曲線可知,有機酸類如EDTA、不同分子量之PEG、離子液體陰離子鹽類如LiPF6、NaBF4、NaDCA、介面活性劑如CTAB添加劑都有減緩鋅腐蝕的作用,而PEG 1000添加劑使鋅金屬的腐蝕電位從-1.517 V上升至-1.489 V,腐蝕電流從498.05 μA/cm2下降至159.87 μA/cm2,抑制鋅溶解效果最佳。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

本研究主要以化學還原法為基礎,利用超臨界二氧化碳製備二氧化錫 與碳材之複合材,並應用於鈉離子電池負極材料。藉由超臨界之高擴散性, 表面張力趨近零等優點,以提高二氧化錫於石墨烯上分散性,並觀察其電化 學特性。 實驗結果指出,超臨界製備之二氧化錫顆粒尺寸(SnO2-SC, 2.5nm)小於 傳統大氣製程(SnO2-air, 5 nm),在 0.02 A/g 充放電速率下,得到 95 mAh/g 之可逆電容。藉由添加相同含量(20 wt.%)之石墨烯與碳管藉此提升其導電 性並作為緩衝基底,並比較不同碳材之特性。20 w%之碳管添加僅能提升至 149 mAh/g,而 20 wt.%石墨烯則可提升至 275 mAh/g 的高可逆電容量,並 同時提升高速充放電能力,這是由於石墨烯擁有較高導電性與表面活性位 置。並當做緩衝區緩衝二氧化錫之高體積膨脹,使循環壽命得以提升,且在 超臨界的均勻分散下,在 100 圈之充放電後仍具有 66 %的電容維持率。 進一步探討石墨烯添加量、製程參數、電解液對於電化學特性之影響, 本研究以 10 wt.%、20wt%、35wt%三種不同石墨烯含量分別進行材料分析 與電化學測試,實驗結果得知 35 wt.%雖然穩定性較佳,但其可逆電容量不 高,而 20 wt.%之添加量能得到最佳之可逆電容量且壽命衰退量較小。超臨 界之流體密度會隨著臨界溫度與臨界壓力改變而有所變動,實驗結果表明, 適中的流體密度能擁有最好的電化學特性,於 145bar, 80°C 下可以得到 240 mAh/g 的可逆電容量,並於 100 圈充放電後仍有 77 %的維持率。 從實驗結果得知,超臨界合成之二氧化錫/石墨烯於納離子電池負極中 得到良好的可逆電容量,為了比較與傳統硬碳之間差異性,本研究使用商用 硬碳與二氧化錫/石墨烯做比較,結果顯示,超臨界二氧化錫/石墨烯於 0.02 A/g 充放電中有優於硬碳 230 mAh/g 的可逆電容量,並且於高速下能也能有 i 較優異的電性以及維持率。 為了探討不同電解液在 SnO2/Graphene 負極材料中對於鈉離子電池中 的影響,以及安全性問題,因此分別使用有機溶劑 PC-EC、PC-FEC、EC- PC-FEC 和離子液體 PMP-FSI 三種電解液做為測試,結果指出,在 25°C 下 有機溶劑仍有較好的可逆電容量,然而因電解液不斷形成 SEI 膜而使電容 量衰退明顯。相較於有機溶劑,雖然離子液體在低溫時仍因黏滯性過高而電 容量不高,但在 100 圈充放電後仍然有 100 %的維持率。當操作溫度提升至 60°C 後,有機溶劑因電解液的分解,造成電容量明顯衰退,相反的,離子 液體則因黏滯性降低而明顯提高整體導電性,並在 0.02 A/g 下得到 346 mAh/g 的可逆電容量。 最後進一步探討電容量與理論電容量差異,藉由 Ex-situ XRD、Ex-situ EXAFS 觀察鈉化與去鈉化反應過程,以及 HRTEM 觀察鈉化後之電極。Ex- situ EXAFS 中觀察發現,SnO2 確實有明顯價數偏移,從原本高價數偏移至 低價數,證明確實有轉化反應發生。而從 Ex-situ XRD 中也看到了在鈉化過 程中 Sn 峰值以及鈉錫合金峰值產生,而在去鈉化過程中,Sn 峰值減弱以鈉 錫合金峰值消失,證明合金化反應可逆性。而HRTEM 中發現並非所有 Sn 顆粒皆反應完全,而使同時擁有 Na9Sn4 與最終相 Na15Sn4 存在以及一些中 間相(NaSnO2),因此可能為電容量無法達到理論電容量原因之一。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。
  • 學位論文

近年來,金屬奈米結構由於獨特的表面電漿共振的特性,具有相當大的潛力可應用,可利用於化學、生物感測器以及新穎光學元件的應用。 本研究以陽極氧化鋁模板製備不同尺寸及厚度的金屬奈米洞陣列於玻璃基板上,相較於傳統微影製程,陽極氧化鋁模板為一低成本,並且可用於製作大尺寸奈米結構之方式。並對不同厚度和直徑的金奈米洞陣列並對其光學性質的變化進行探討和模擬做比較。當固定孔洞直徑為 211 nm,隨著厚度分別為 18、30 及 45 nm 的增加,表面電漿共振波長會從 993 nm 位移至 884 nm 以及 839 nm。而在固定厚度為 30 nm 的情況下,孔洞直徑分別為 170 nm、211 nm 及 232 nm 時,其表面電漿共振波長會從 796 nm 位移至 884 nm 和 910 nm。以上實驗的結果與模擬結果擁有相同的趨勢且誤差皆在 5 % 以下。 在折射率敏感度的量測上可發現,在固定奈米孔洞陣列直徑下隨著的厚度越薄,折射率的敏感度越靈敏,其敏感度在 18 nm 厚度的為 432 nm/RIU。而當固定厚度則是在直徑越大時,有較佳的折射率敏感度,在直徑 232 nm 時的環境折射率敏感度為 368 nm/RIU。

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。