透過您的圖書館登入
IP:18.217.212.222
  • 學位論文

人類胎盤融合蛋白syncytin 2後基因調控機制之探討

Epigenetic Regulation of the Placental Fusogenic Protein, Syncytin2

指導教授 : 陳宏文
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


Syncytin 2屬於人類內生性反轉錄病毒(human endogenous retrovirus)HERV-FRD之外鞘蛋白,其專一表現在胎盤滋養層細胞中,已知syncytin 2會促進細胞滋養層細胞進行細胞融合,而形成融合滋養層,故syncytin 2在胎盤發育上扮演重要的角色。而過去研究指出,人類胚胎發育過程中,胎盤組織裡的DNA甲基化程度明顯較胚胎本體組織來的低,且最近有報導發現,syncytin家族另一個成員syncytin 1,在胎盤細胞中,syncytin 1之5’-long terminal repeat(5’-LTR)啟動子上DNA甲基化程度非常低,使得syncytin 1能表現於胎盤細胞中,因此,本篇論文想探討是否細胞能透過改變5’LTR啟動子上DNA甲基化與組蛋白修飾等後基因修飾,而達到syncytin 2表現。實驗結果顯示,胎盤細胞或組織中的syncytin 2 5’LTR上甲基化程度顯著比非胎盤細胞來的低,且5’LTR上的組蛋白修飾皆為活化態的修飾,接著再利用報導基因方式發現syncytin 2 5’LTR若甲激化會影響到其轉錄活性,但有趣的是,含DNA甲基化syncytin 2 5’LTR的報導基因送胎盤細胞中,仍具有一定的轉錄活性,這表示胎盤細胞中具有特殊分子機制可對syncytin 2 5’LTR做去甲基化的動作;接著,發現胎盤組織特定轉錄因子GCMa可調控syncytin 2表現,且在非胎盤細胞MCF-7中表現GCMa後,會促進syncytin 2 5’LTR的DNA去甲基化,故GCMa轉錄因子除了調控基因表現外,同時在syncytin 2 5'LTR啟動子的去甲基化扮演重要角色;最後發現GCMa會與thymine DNA glycosylase(TDG)之間有結合能力,而TDG過去被指出可進行DNA去甲基化的酵素,因此GCMa可能透過吸引TDG至syncytin 2 5’LTR來進行DNA去甲基化的動作。綜合以上實驗結果,證實在胎盤細胞及非胎盤細胞中,syncytin 2 5’LTR上的後基因修飾有所不同,且胎盤特殊轉錄因子GCMa可促進syncytin 2 5’LTR DNA去甲基化以及啟動syncytin 2 mRNA表現。

並列摘要


Syncytin 2, an envelope glycoprotein encoded by the human endogenous retrovirus FRD (HERV-FRD), is specifically expressed in placental trophoblasts. It has been reported that syncytin 2 is a fusogenic protein. Therefore, syncytin 2 may play an important role in placental development by regulation of trophoblastic fusion. Previous studies have shown that the placenta exhibits lower overall DNA methylation levels than the embryo. A recent study has shown that the 5’-long terminal repeat (5’LTR) promoter of syncytin 1, which encodes the envelope protein of HERV-W, is hypomehtylated and controls syncytin 1 expression in placenta. In this study, we further investigated whether DNA methylation and histone modification control syncytin 2 expression in placenta. We demonstrated that the 5’LTR of syncytin 2 is hypomethylated and harbors active histone modification in placental cells. In luciferase reporter assay, in vitro DNA methylation inhibited the promoter activity of syncytin 2 5’LTR. Interestingly, the promoter activity of in vitro methylated syncytin 2 5’LTR could be restored in placental cells. To study the mechanism that counteracts the suppressive effect of DNA methylation on syncytin 2 5’LTR promoter in placenta, we demonstrated that placental transcription factor, GCMa, not only regulates syncytin 2 expression but also promotes DNA demethylation on syncytin 2 5’LTR. We further demonstrated that GCMa associates with TDG, an enzyme that involves in DNA demethylation process. This implies that GCMa may recruit TDG to demethylate syncytin 2 5’LTR. Overall, our results reveal an epigenetic regulation of syncytin 2 gene expression and that GCMa is a key factor for DNA demethylation of syncytin 2 promoter and transcription activation of syncytin 2.

並列關鍵字

epigenetics syncytin DNA methylation GCMa TDG histone modification

參考文獻


Aapola, U., Kawasaki, K., Scott, H.S., Ollila, J., Vihinen, M., Heino, M., Shintani, A., Minoshima, S., Krohn, K., Antonarakis, S.E. (2000). Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65, 293-298.
Akiyama, Y., Hosoya, T., Poole, A.M., and Hotta, Y. (1996). The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci U S A 93, 14912-14916.
Altshuller, Y., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., and Frohman, M.A. (1996). Gcm1, a mammalian homolog of Drosophila glial cells missing. FEBS Lett 393, 201-204.
Anson-Cartwright, L., Dawson, K., Holmyard, D., Fisher, S.J., Lazzarini, R.A., and Cross, J.C. (2000). The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet 25, 311-314.
Antony, J.M., van Marle, G., Opii, W., Butterfield, D.A., Mallet, F., Yong, V.W., Wallace, J.L., Deacon, R.M., Warren, K., and Power, C. (2004). Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7, 1088-1095.

延伸閱讀