簡易檢索 / 詳目顯示

研究生: 許貿傑
Hsu, Mao-Chieh
論文名稱: 結合季長期天氣預報與標準化降雨指標建立有勝溪斷流預警系統
Combined seasonal forecast with Standardized Precipitation Index to construct river fragmentation warning system of Yousheng Creek
指導教授: 李宗祐
Lee, Tsung-Yu
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 91
中文關鍵詞: 間歇流伏流水上游流域生態保育
英文關鍵詞: intermittent flow, hypoheric flow, headwater catchment, ecological conservation
DOI URL: http://doi.org/10.6345/NTNU201900338
論文種類: 學術論文
相關次數: 點閱:85下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來研究人員發現域外放流至羅葉尾溪的櫻花鉤吻鮭有向其下游的有勝溪擴張之趨勢,卻遭到有勝溪斷流事件的阻礙,羅葉尾溪成功的域外放流,卻可能因有勝溪頻繁地斷流事件而直接衝擊臺灣國寶魚棲地生態的完整性。因此,本研究欲藉由航遙測影像、雨量與流量資料之比對來探討有勝溪斷流發生機制,並結合季長期天氣預報與標準化降雨指標建立有勝溪斷流預警系統。
    結果顯示,有勝溪自2012年之後,河道受颱風影響從直流而成曲流的情況下,單月標準化降雨指標(SPI-1)小於0或日流量低於0.531CMS,即可能會發生斷流。因此,本研究採用中央氣象局提供季長期天氣展望資料,並配合修正後有勝溪每月雨量屬於偏高(Above)、正常(Normal)、偏低(Below)之機率分類區間的界定門檻值,依月分別輸入台北、台中與花蓮測站的季預報結果,以氣象合成模式繁衍有勝溪月雨量資料。本研究採歷史季預報預測下一個月的結果,以SPI-1小於0做為斷流預警指標,應用於推估2012年8月之後斷流事件,其準確率達57%。本研究另外發現,以IHA計算2012年前後兩時期的各項流量指標,結果並無明顯差異,顯示位在斷流處下游流量站的流量變化無法真實反映上游頻繁斷流的現象,顯示斷流河段現地觀測之必要性。

    Recently, the success in the reintroduction to the Louyewei Creek inspired researchers who have been working on the salmon conservation. The offspring of the reintrodueced the Formosan landlocked salmons (Oncorhynchus masou formosanus) have a tendency to expand their habitat to the Yousheng Creek, the downstream of the Loyewei Creek. However, the habitat expansion was limited by the river fragmentation in the Yousheng Creek. In order to understand the occasions of the river fragmentation, we have collected and analyzed the historical satellite image, rainfall and streamflow data, also combined seasonal forecast with Standardized Precipitation Index to establish river fragmentation warning system of Yousheng Creek.
    It is found that after Aug., 2012, the flow direction was changed from the straight to the meandering, and the flow was braided. In this condition, i.e. meandering and braided, river fragmentation occurred while SPI-1<0 or streamflow less than 0.531CMS. The study therefore constructed the river fragmentation warning system according to the forecast of seasonnal long-term weather outlook of Central Weather Bureau (CWB). The thresholds of three outlook classes, i.e. A(Above), N(Normal) and B(Below), of Yousheng Creek’s monthly rainfall were modified firstly, ensuring the class of monthly Yousheng’s rainfall to match the class of the coresponding CWB weather station (one among Taipei, Taichung and Hualien station). Afterwards, the daily rainfall could be generated by Weather Generator (WGEN) according to the CWB’ outlook forecast and the rainfall statisitics for the outlook class of Yousheng’s rainfall. After generating the rainfall, the study utilized SPI-1<0 as the river fragmentation warning indicator to assessment fragmentation events after October, 2012. The accuracy of predicting fragmentation is 57%. Besides, IHA was used to assess the flow changes between 1996-2012 and 2013-2016. It is found that three was no statistically significant changes among the two peridos. It indicats that the frequency occurance of fragmention in the upstream could not be reflected by the streamflow data measured in the downstream watershed outlet. In-situ measurement in the fragmented reaches is therefore strongly suggested.

    第一章 緒論 1 第一節 研究動機與目的 1 1.1 研究動機 1 1.2 研究目的 1 第二節 文獻回顧 2 2.1 氣候變遷對櫻花鉤吻鮭棲地之影響 2 2.2 間歇河與河溪生態之相關研究 2 2.2.1 河川斷流之發生原因 3 2.2.2 河川斷流之影響評估 4 2.3 河川流量與河溪生態之相關研究 4 2.4 天氣預報之相關應用 4 第二章 研究區域、材料與方法 7 第一節 研究區域 7 第二節 材料與方法 7 2.1 研究資料 7 2.1.1 衛星影像與航空照片 7 2.1.2 氣象與流量測站資料 8 2.1.3 魚群數量 8 2.1.4 中央氣象局季天氣長期展望資料 9 2.2 氣象資料合成步驟 11 2.2.1 選取歷年降雨分布特性最相似的季預報測站 11 2.2.2 合理修正有勝溪歷年月總雨量BNA的界定門檻值 12 2.2.3 氣象資料合成模式(WGEN) 13 2.3 標準化降雨指標(SPI) 14 2.4 IHA(水文改變指標) 14 第三節 研究流程 16 第三章 水文條件與有勝溪斷流之關係 19 第一節 有勝溪之歷史斷流事件 19 第二節 雨量與斷流之關係 24 第三節 流量與斷流之關係 28 第四節 斷流與魚群數量之關係 34 第四章 有勝溪斷流預警系統之建置 37 第一節 雨量相關性分析結果 37 第二節 有勝溪歷年月總雨量BNA門檻值之合理修正結果 38 第三節 結合季長期預報之雨量預報結果 39 第五章 流量分析指標與斷流之關係 49 第一節 IHA之分析成果 49 第二節 IHA與斷流之關係 54 第六章 結論與建議 55 第一節 結論 55 第二節 建議 56 參考文獻 59 中文文獻 59 英文文獻 60 附錄 63

    中文文獻
    中央研究院生物多樣性研究中心 (2001):〈臺灣櫻花鉤吻鮭〉,《臺灣魚類資料庫》。http://fishdb.sinica.edu.tw/chi/species.php?id=382788。 (2018/04/18瀏覽)。
    吳淑涵(2012)。應用極端流量及水溫評估氣候變遷對櫻花鈎吻鮭棲地之衝擊(未出版之碩士論文)。國立臺灣大學生物環境系統工程學研究所,臺北市。
    李宗祐(2003)。氣候變遷對櫻花鉤吻鮭棲地水溫及族群數量之影響(未出版之碩士論文)。國立臺灣大學生物環境系統工程學研究所,臺北市。
    李宗祐(2010)整合觀測及模擬分析土地利用改變對七家灣溪水質、水溫影響之研究(未出版之博士論文)。國立臺灣大學生物環境系統工程學研究所學位論文,臺北市。
    李宗祐、黃誌川與邱永嘉(2016)。105年度評估水文條件改變及河床-河水交互作用對七家灣溪河川流量與溪流棲地之影響。雪霸國家公園管理處委託研究成果報告(編號:10514)。
    李宗祐、黃誌川與邱永嘉(2017)。106年度評估水文條件改變及河床-河水交互作用對七家灣溪河川流量與溪流棲地之影響。雪霸國家公園管理處委託研究果報告(編號:10612)。
    李秉道(2016)。應用季氣候預報於水資源風險評估(未出版之碩士論文)。國立中央大學水文與海洋科學研究所,桃園市。
    李培芬(2008)。氣候變遷對生態的衝擊。科學發展,424,34-43。
    李清滕與盧孟明(2009)。適當氣候平均統計模式應用台灣地區溫度預報。大氣科學,37(2):87-98
    沈孟妍(2012)。應用短期氣候預報於春耕乾旱休耕決策之探討-以大漢溪供水系統為例(未出版之碩士論文)。國立中央大學水文與海洋科學研究所,桃園市。
    洪念民(1997)。氣候變遷對大安溪水資源營運之影響(未出版之碩士論文)。國立臺灣大學農業工程研究所,臺北市。
    胡志文、蕭志惠、童雅卿、任俊儒、鄭凱傑、黃文豪、施宇晴、施景峰、莊穎叡與賈愛玫(2008)。中央氣象局動力統計預報系統簡介。「97年天氣分析與預報研討會」發表之論文,交通部中央氣象局。
    陳孟詩(2010)。中央氣象局月季長期天氣展望之預報校驗。「99年天氣分析與預報研討會」發表論文,交通部中央氣象局。
    陳孟詩、李明營、劉人鳳、羅資婷與張琬玉(2014)。短期氣候預報作業之發展。「105年天氣分析與預報研討會」發表論文,交通部中央氣象局。
    曾晴賢(1999)。櫻花鉤吻鮭族群監測與生態調查(二)。雪霸國家公園管理處委託研究成果報告(編號:8806)。
    童慶斌等(2006)。應用季節性氣候預報於水庫蓄水量預測。農業工程學報,52(2),51-66。
    童慶斌與李宗祐(2001)。氣候變遷對七家灣溪流量之影響評估。中國農業工程學報,47.1,65-74。
    童慶斌與楊奕岑(2004)。氣候變遷對台灣河川生態之衝擊。全球變遷通訊雜誌,44,18-23。
    童慶斌與楊奕岑(2006)。氣候變遷對櫻花鈎吻鮭適當棲地之衝擊。農業工程學報,52(1),1-12。
    楊正雄(1997)。水溫對櫻花鉤吻鮭族群的影響(未出版之碩士論文)。國立清華大學生命科學所分子與細胞生物組,新竹市。
    楊奕岑(2004)。模擬氣候變遷對櫻花鉤吻鮭域外放流棲地水溫與潛在族群數之衝擊(未出版之碩士論文)。國立臺灣大學生物環境系統工程學研究所,臺北市。
    楊道昌等(2005)。標準化降雨指標應用於農業乾旱監測之研究。農業工程學報,51(2),11-25。
    廖林彥(2016)。105年臺灣櫻花鉤吻鮭族群分布及放流監測。雪霸國家公園管理處自行研究成果報告(編號:10515)。
    廖林彥與陳建呈(2017)。106年臺灣櫻花鉤吻鮭族群分布及放流監測。雪霸國家公園管理處自行研究成果報告(編號:10614)

    英文文獻
    Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N., Ginebreda, A., ... & Palmer, M. A. (2014). Why should we care about temporary waterways?. Science, 343(6175), 1080-1081.
    Council, P. R. (1993). The decline of coho salmon and the need for protection under the Endangered Species Act. Rep Pac Rivers Counc, Eugene, Washington.
    Davey, A. J., & Kelly, D. J. (2007). Fish community responses to drying disturbances in an intermittent stream: a landscape perspective. Freshwater Biology, 52(9), 1719-1733.
    Dudgeon, D. (2000). Large-Scale Hydrological Changes in Tropical Asia: Prospects for Riverine Biodiversity: The construction of large dams will have an impact on the biodiversity of tropical Asian rivers and their associated wetlands. BioScience, 50(9), 793-806.
    Fullerton, A. H., Burnett, K. M., Steel, E. A., Flitcroft, R. L., Pess, G. R., Feist, B. E., ... & Sanderson, B. L. (2010). Hydrological connectivity for riverine fish: measurement challenges and research opportunities. Freshwater biology, 55(11), 2215-2237.
    Haith, D. A., & Shoenaker, L. L. (1987) Generalized watershed loading functions for stream flow nutrients. JAWRA Journal of the American Water Resources Association, 23(3), 471-478.
    Haith, D. A., Mandel, R., & Wu, R. S. (1992). GWLF, generalized watershed loading functions, version 2.0, user’s manual. Dept. of Agricultural & Biological Engineering, Cornell University, Ithaca, NY.
    Hwan, J. L., & Carlson, S. M. (2016). Fragmentation of an intermittent stream during seasonal drought: Intra‐annual and inter-annual patterns and biological consequences. River Research and Applications, 32(5), 856-870.
    Indicators of Hydrologic Alteration, Version 7, User’s Manual.
    Labbe, T. R., & Fausch, K. D. (2000). Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecological Applications, 10(6), 1774-1791
    Lee, T. Y., Huang, J. C., Kao, S. J., Liao, L. Y., Tzeng, C. S., Yang, C. H., ... & Tung, C. P. (2012). Modeling the effects of riparian planting strategies on stream temperature: Increasing suitable habitat for endangered Formosan Landlocked Salmon in Shei‐Pa National Park, Taiwan. Hydrological Processes, 26(24), 3635-3644.
    Leigh, C., Boulton, A. J., Courtwright, J. L., Fritz, K., May, C. L., Walker, R. H., & Datry, T. (2016). Ecological research and management of intermittent rivers: an historical review and future directions. Freshwater Biology, 61(8), 1181-1199.
    Liu, T. M., Tung, C. P., Ke, K. Y., Chuang, L. H., & Lin, C. Y. (2009). Application and development of a decision-support system for assessing water shortage and allocation with climate change. Paddy and Water Environment, 7(4), 301.
    McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). Boston, MA: American Meteorological Society.
    Miller, D. J., Burnett, K. E. L. L. Y., & Benda, L. E. E. (2008). Factors controlling availability of spawning habitat for salmonids at the basin scale. In American Fisheries Society Symposium(Vol. 65, pp. 000-000).
    Nikolaidis, N. P., Demetropoulou, L., Froebrich, J., Jacobs, C., Gallart, F., Prat, N., ... & Davy, T. (2013). Towards sustainable management of Mediterranean river basins: policy recommendations on management aspects of temporary streams. Water Policy, 15(5), 830-849.
    Prat, N., Gallart, F., Von Schiller, D., Polesello, S., García‐Roger, E. M., Latron, J., ... & De Girolamo, A. M. (2014). The mirage toolbox: an integrated assessment tool for temporary streams. River research and applications, 30(10), 1318-1334.
    Pringle, C. (2003). What is hydrologic connectivity and why is it ecologically important?. Hydrological Processes, 17(13), 2685-2689.
    Pringle, C. M. (2000). Threats to US public lands from cumulative hydrologic alterations outside of their boundaries. Ecological Applications, 10(4), 971-989.
    Pringle, C. M. (2001). Hydrologic connectivity and the management of biological reserves: a global perspective. Ecological Applications, 11(4), 981-998.
    Rice, S., Roy, A., & Rhoads, B. (Eds.). (2008). River confluences, tributaries and the fluvial network. John Wiley & Sons.
    Rosenberg, D. M., McCully, P., & Pringle, C. M. (2000). Global-scale environmental effects of hydrological alterations: introduction. BioScience, 50(9), 746-751.
    Stanford, J. A., & Ward, J. V. (2001). Revisiting the serial discontinuity concept. River Research and Applications, 17(4‐5), 303-310
    Suen, J. P. (2010). Potential impacts to freshwater ecosystems caused by flow regime alteration under changing climate conditions in Taiwan. Hydrobiologia, 649(1), 115-128.
    Tung, C. P., & Haith, D. A. (1995). Global-warming effects on New York streamflows. Journal of Water Resources Planning and Management, 121(2), 216-225.
    Tung, C. P., Liu, T. M., Chen, S. W., Ke, K. Y., & Li, M. H. (2014)Carrying Capacity and Sustainability Appraisals on Regional Water Supply Systems under Climate Change. British Journal of Environment and Climate Change, 4(1),27-44.
    Ward, J. V. (1989). The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society, 8(1), 2-8.

    下載圖示
    QR CODE