透過您的圖書館登入
IP:3.135.198.49
  • 學位論文

應用非線性側推分析於地下自來水管線受斷層錯動之研究

Application of Nonlinear Pushover Analysis on Buried Water Pipelines under Faulting

指導教授 : 鍾立來 吳賴雲

摘要


地震為台灣常見天然災害之一,當地震發生時,除了地表上之結構如房屋或橋梁會受到損壞之外,地下結構如自來水管線或是結構物基礎亦可能受到損壞,其中由於水為民眾每天所需之物資,因此當地下自來水管線因地震產生損壞而無法提供正常服務功能,則勢必產生民生與衛生問題,更可能因此產生二次災害如火災與瘟疫,故自來水管線因地震所引起之損壞不可不視。當地震發生時,地下自來水管線可能因地層錯動或液化而發生損壞,其中以地層錯動所引起之破壞最為嚴苛,故許多研究皆是探討管線受地層錯動下之行為。 本研究旨在利用側推分析來探討連續管受地層錯動之行為,一般而言,當連續管受到地層錯動時,管體可能因承受過大之彎矩而發生局部挫屈,因此如欲以側推分析來探討連續管受錯動行為,則需有合適的非線性鉸來模擬管體行為,因此本文便針對地下自來水管線建立一考慮局部挫屈之彎矩非線性鉸;此外本文並建立一軸力非線性鉸,得到管構件之非線性鉸後,工程師可用於側推分析,並對連續管受地層錯動之行為有一初步分析,其中由於國內輸配水管線常使用之管材為延性鑄鐵管,因此本文之研究管材選擇了延性鑄鐵管。 本研究之案例分析探討了直徑400mm連續管受平移斷層錯動之行為,其中連續管受平移斷層之行為又可分為拉力加撓曲控制與壓力加撓曲控制,在拉力與撓曲控制的案例分析之結果發現,在二階效應下,管體最大彎矩會因拉力所產生之二階彎矩而變小,因此不易發生局部挫屈,其中對於拉力破壞之案例而言,分析所得到之管線容許斷層錯動量非常接近Newmark與Hall之理論解,但對於撓曲破壞之案例而言,Newmark與Hall之理論解則會高估管線容許斷層錯動量;在壓力與撓曲控制的案例分析結果發現,在二階效應下,管體最大彎矩會因壓力所產生之二階彎矩而變大,因此更容易發生局部挫屈,且其容許斷層錯動量與拉力加撓曲控制下的容許錯動量相比會較小。

並列摘要


When continuous buried water pipeline is subjected to fault movement, damage is inevitable and water supply may be affected. In order to investigate the local buckling behavior of buried water pipelines under faulting, sophisticated finite element method may be adopted and the pipeline is simulated by using shell element. However, in practice, numerical analysis of buried pipelines under faulting with shell element is too complicated and time consuming for engineers. Hence, a method for nonlinear pushover analysis of buried water pipelines under faulting is proposed in this study. Nonlinear moment and axial plastic hinges are developed for the pipelines. Described in terms of plastic hinges, the nonlinear behavior of the pipelines can be simply simulated by using beam elements. In addition, restoring force provided by the surrounding soil is simulated by nonlinear link. Given the angle of faulting relative to the pipeline, nonlinear pushover analysis can be conducted. From the result of the analysis, the failure mode of the pipeline and the corresponding allowable faulting movement can be achieved. This information is useful for the design of buried pipelines in seismically active areas.

參考文獻


[3] 邱俊翔,陳正興,楊鶴雄,“樁頭受側向力作用之側推分析模式”,國家地震工程研究中心報告,NCREE-07-012,2007。
[1] Tsai, J.S., Jou, L.D. and Lin, S.H., “Damage to buried water supply pipelines in the Chi-Chi(Taiwan) earthquake and a preliminary evaluation of seismic resistence of pipe joints,” Journal of the Chinese institute of Engineers, vol.23(24), pp. 395-408, 2000.
[5] 侯信宇,“地下延性鑄鐵管通過斷層之接頭佈設研究”,國立成功大學土木工程研究所碩士論文,2008。
[6] Joshi, S., Prashant, A., Deb, A. and Jain, S.J., “Analysis of buried pipelines subjected to reverse fault motion,”Soil Dynamics and Earthquake Engineering, 31(7), pp.930-940, 2011.
[9] Kennedy, R.P., Darrow, A.C. and Short, S.A., “Seismic design of oil pipeline systems,” Transport, Eng. J. ASCE 105, pp. 119-205, 1979.

被引用紀錄


蔡利群(2012)。地下管線於斷層運動下之數值分析〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201200122
邱于軒(2014)。地下管線耐震參數本土化與應用側推分析於土壤液化之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.01333
郭峻瑋(2012)。自來水管線力學試驗與非線性側推分析之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2012.03206

延伸閱讀