透過您的圖書館登入
IP:3.138.200.66
  • 學位論文

含異原子雙芽碳烯配位基及其後過渡金屬錯合物合成與催化反應研究

Heterotopic Bidentate NHC Ligands and Their Late Transition Metal Complexes-Synthesis and Catalysis

指導教授 : 陳竹亭

摘要


在本論文中,含半易變異原子碳烯雙芽配基釕金屬錯合物可以當作勻相催化劑應用於矽氫加成反應、氫甲醛化反應、共軛加成反應和環化加成反應。 含異原子碳烯雙芽配位基釕金屬錯合物是以化學式[Rh(COD)LN-C]+X-或是以化學式[Rh(COD)LS-C]+X-所組成,而這些錯合物合成採用將銀碳烯錯合物做金屬轉值反應到釕金屬前驅物上。且釕金屬錯合物(4a-4i)在碳譜上碳烯碳的化學位移在176-177 ppm,而釕碳的耦合常數為53-54 Hz,嘧啶碳烯雙芽配位基釕金屬錯合物對於矽氫加成到苯乙酮反應有很好的反應活性(產率為98%)。 在室溫的氫譜中,錯合物4a的1,5-環辛二烯上的烯的氫譜是寬的且硫醚側臂的亞甲基的氫譜呈現單一鋒,變溫核磁共振光譜技術可以被採用來研究這些現象,並根據Gutowsky-Holm和Eyring公式可計算出硫原子反轉的自由能為48.61KJmol-1。 含有硫醚碳烯雙芽配位基的釕金屬錯合物對氫甲醛化芳香烯烴或脂肪烯烴反應是很有效率的催化劑,但是它的產物醛的直鏈/支鏈比是差不多的,比值差不多是1,可以藉由加入磷配位基來調控產物醛的直鏈/支鏈比,並可將產物得到全部都是支鏈醛的產物但是只有25%的轉換率,合成氣體的壓力可以被調降到300 psi,而氫甲醛化反應的轉換率是定量生成的和產物醛的直鏈/支鏈比值在0.93-1.23。 含有硫醚碳烯雙芽配位基的釕金屬錯合物對硼酸共軛加成到

關鍵字

碳烯 共軛加成 耦合 環化加成

並列摘要


In this thesis, the cationic rhodium (I) complexes bearing with hemilabile NHC bidentate ligands have been developed for the service as homogeneous catalysts using in the reactions such as hydrosilylation, hydroformylation, conjugate addition, and cycloaddition is studied. The cationic rhodium (I) complexes bearing NHC bidentate ligands in the form of [Rh(COD)LN-C]+X- or in the form of [Rh(COD)LS-C]+X- are successfully synthesized via transmetalation of silver NHC complex to cationic rhodium (I) metal source. The rhodium carbene carbon of the cationic rhodium (I) complexes (4a-4i) show 13C NMR resonance in 176.0-177.0 ppm and JRh-C = 53.0-54.0 Hz. The cationic rhodium (I) pyrimidyl NHC complexes display excellent catalytic activity for the hydrosilytion of acetophenones.(98% yield) The proton NMR of 4a shows the broad peaks in the COD and the singlet peak of the methylene protons of the thioether side arm at room temperature. To study the phenomenon in the solution containing 4a, the variable temperature NMR spectra are measured. According to the Gutowsky-Holm relationship24 and Eyring equation, the free energy of the sulfur inversion can be calculated in 48.61 KJmol-1. The rhodium (I) thioether NHC complexes can be effective catalysts for hydroformylation of aromatic or aliphatic olefins, but the selectivity of linear/branch aldehydes is fair (the ratio of linear/branch is almost 1). By adding phosphines, we can tune the ratio of linear/branch to be all branched aldehyde but the conversion is low (25% conversion). We can reduce the pressure of syn gas (H2/CO=1/1) to 300 psi instead of high pressure (1000 psi). The conversion of the hydroformylation can be quantitative and the ratio of the linear/branched aldehyde can be 0.93-1.23. The rhodium (I) thioether NHC complexes are efficient catalysts for the conjugate addition of boronic acids to enones. The catalyst loading was reduced to 0.5 mol% instead of the 3 mol% catalyst loading. The electron deficient or electron rich aryl boronic acids cannot retard the reaction. In spite of the bulky substituent such as o-methoxyphenyl boronic acid, the yield of Michael addition product was obtained in quantitative yield (98%). If thiol replaced the boronic acid, the thia- Michael addition can also be excellent yied (95%) by using rhodium thioether carbene catalyst. [2+2+2] Cycloaddition of DEAD or DMAD can be achieved in aqueous solution by using rhodium (I) thioether carbene catalyst. The DEAD and diyne can be different alkyne moiety and cyclotrimerize to form the cyclic benezene derivative. Pd (II) complexes bearing bidentate pyrimidyl-N-heterocyclic carbene ligands in the form of [LN-C]PdCl2 (LN-C = 2-pyrimidyl-imidazolylidene-NR, R = Me (5a), PhCH2 (5b), 2,6-Me2C6H3 (5d), 2,4,6-Me3C6H2 (5c)) have been synthesized and structurally characterized. The pyrimidyl-NHC ligand can facilitate these complexes for Suzuki-Miyaura cross coupling of aryl bromides and boronic acids.

並列關鍵字

NHC rhodium palladium congugate addition hydroformylation coupling

參考文獻


1. (a) Anderson, M. P.; Casalnuovo, A. L.; Johson, B. J.; Mattson, B. M.; Mueting, A. M.; Pignolet, L. H. Inorg. Chem. 1988, 27, 1649. (b) Abu-Gnim, C.; Amer, I. J. Mol. Catal. 1993, 85, L275. (c) Zhang, Z. -Z.; Cheng, H. Coord. Chem. Rev. 1996, 147, 1. (d) Loiseleur, O.; Meier, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1996, 35, 2, 200. (e) Schnider, P.; Koch, G.; Pretot, R.; Wang, G.; Bohnen, F. M.; Kru¨ ger, C.; Pfaltz, A. Chem. Eur. J. 1997, 3, 889. (f) Mudalige, D. C.; Ma, E. S.; Rettig, S. J.; James, B. R.; Cullen, W. R. Inorg. Chem. 1997, 36, 5426. (g) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighhi, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 4369. (h) Reddy, K. R.; Chen, C. L.; Liu, Y. H.; Peng, S. M.; Chen, J. T.; Liu, S. T. Organometallics 1999, 18, 2574. (i) Amatore, C.; Fuxa, A.; Jutand, A.Chem. Eur. J. 2000, 8, 1474.
2. Lappert, M. F. J. Organomet. Chem. 1988, 358, 185.
5. Gade, L. H.; Bellemin-Laponnaz, S. Coord. Chem. Rev. 2007, 251, 718.
8. (a) Spencer, L. P.; Winston, S.; Fryzuk, M. D. Organometallics 2004, 23, 3372. (b) Arnold, P. L.; Mungur, S. A.; Blake, A. J.; Wilson, C. Angew. Chem., Int. Ed. 2003, 42, 5981. (c) Douthwaite, R. E.; Houghton, J.; Kariuki, B. M. Chem. Commun. 2004, 698. (d) Hu, X.; Meyer, K. J. Am. Chem. Soc. 2004, 126, 16322. (e) Liao, C. Y.; Chan, K. T.; Zeng, J. Y.; Hu, C. H.; Tu, C. Y.; Lee, H. M. Organometallics 2007, 26, 1692. (f) Jiménez, M. V.; Pérez-Torrente, J. J.; Bartolomé, M. I.; Gierz, V.; Lahoz, F. J.; Oro, L. A. Organometallics 2008, 27, 224. (g) Arnold, P. L.; Liddle, S. T. Chem. Commun. 2006, 3959, 3971.
9. Albert, K.; Gisdakis, P.; Rösch, N. Organometallics, 1998, 17, 1608.

延伸閱讀