透過您的圖書館登入
IP:3.145.8.153
  • 學位論文

含三氯甲基之釕金屬亞乙烯基及乙炔基錯合物的反應-固態下以光裂解製備環丁烯酮基錯合物及其在空氣下進行催化反應的應用

Reactions of Ruthenium Vinylidene and Acetylide Complexes Containing Trichloromethyl Groups: Preparation of Cyclobutenonyl Complex by Solid State Photolysis and the Applications in Catalytic Reactions under Air Atmosphere

指導教授 : 林英智

摘要


以陽離子釕金屬亞乙烯基錯化合物 [Ru2]=C=CHC(OH)(CCl3)2+ (2, [Ru2] = Cp(PPh3)2Ru) 為起始物的一系列新穎反應在此論文中進行討論。將錯合物2與n-Bu4NOH反應後,可觀察到一個罕見的氯仿離去反應並且產生一個中性的釕金屬炔基錯合物 [Ru2]−C≡CC(=O)CCl3 (3)。隨後,將錯合物3以固體狀態接受光照,進行光學異構化反應後,可以高產率得到一個釕金屬四環錯合物ruthenium perchlorocyclobutenonyl complex [Ru2]−C4Cl3O (4)。將此構型轉化過程以密度泛函理論(DFT)進行計算分析後發現,錯合物4比錯合物3穩定了4.22 仟卡/莫耳。在4與2-甲基-3-炔-1-丁烯進行偶合反應後,四環結構仍然穩固存在,並轉移到烯缺上形成一個含有四環結構的錯合物5。此偶合產物可以氯化氫分子將有機分子部分從金屬上切除下來。對錯合物2進行去質子化反應可以得到錯合物9。當進行光裂解錯合物的反應時,在加入氯化氫分子的狀況下,產生一個中性的釕金屬亞乙烯基錯化合物Cl[Ru1]=C=CHC(OH)(CCl3)2 (10, [Ru1] = Cp(PPh3)Ru) 並且伴隨著一個三苯基磷分子的離去。無論在水溶液或是在有機溶液中,錯合物4對於DMAD分子的三聚合反應是一個良好的催化劑。另一方面,一個相當有效率的一鍋法催化分子間[ 2+2+2 ] 環化反應也可利用空氣穩定的錯合物4經由簡單的操作過程來進行。此反應可將兩當量的DMAD分子和一當量各式各樣雙芳香環取代的乙炔分子在空氣下進行一個環化反應,並且可使用未經純化過的試藥級溶劑。此2:1環加成反應不須添加任何額外的添加劑,且可在空氣下得到其產物(14,15和16)並具有高度的化學選擇性和高產率。此分子間的交錯三聚合反應也分別利用錯合物4與三個雙炔結構分子或一個三炔結構分子,在逐步反應中來合成多環化合物且都具有高的產率。如果在含有過量的苯乙烯的情況下,一個DMAD分子可與一個苯乙烯分子利用錯合物4進行偶合反應,進而得到一個共軛的雙炔分子PhCH=CHC(CO2Me)=CHCO2Me (17)。對錯合物4進行水解反應可得到一個環丁二酮基的錯合物 [Ru2]−(C4ClO2) (6),此錯合物在水中為一個對於三聚合催化反應更為穩定的催化劑。3,4,5,6,8,10,14hs,14ha,16p,20 和 27等化合物的固態結構以X-ray單晶繞射分析進行鑑定。

並列摘要


New reactions were observed for the cationic gamma-hydroxyvinylidene complex [Ru2]=C=CHC(OH)(CCl3)2+ (2, [Ru2] = Cp(PPh3)2Ru). A rare chloroform elimination was observed when 2 was treated with n-Bu4NOH yielding the neutral acetylide complex [Ru2]−C≡CC(=O)CCl3 (3). Then solid state photoinduced isomerization of 3 generated the ruthenium perchlorocyclobutenonyl complex [Ru2]−C4Cl3O (4) in high yield. This transformation is analyzed by DFT calculation and complex 4 is found 4.22 kcal/mol more stable in Gibbs free energy than complex 3. In the coupling reaction of 4 with 2-methyl-1-buten-3-yne the four- membered ring ligand is transferred to enyne to give the substituted eta3-butadienyl complex 5 containing the cyclobutenonyl group. This coupling product could be removed from the metal by HCl. Deprotonation of 2 gave the gamma-hydroxyacetylide complex [Ru2]−C≡CC(OH)(CCl3)2 (9). In the photolysis of 9, phosphine dissociation is followed by addition of HCl yielding the neutral vinylidene complex Cl[Ru1]=C=CHC(OH)(CCl3)2 (10, [Ru1] = Cp(PPh3)Ru). Complex 4 is an efficient catalyst for the trimerization of DMAD in aqueous solution as well as in organic solvent. Also, an efficient one-pot intermolecular [2+2+2] cycloaddition of 2 equiv. of DMAD and 1 equiv. of various biaryl alkynes under mild condition by an easy-to-handle complex 4 in unpurified solvents of regent grade quality. The 2:1 cycloaddition products (14, 15 and 16) were afforded in high chemoselectivity and good yield without any additives under air atmosphere. Stepwise cross-trimerizations catalyzed by 4 were also carried out for three diynes and one triyne compounds in two or three steps, respectively, to afford the polycyclic compounds all in high yields. If the catalytic reaction is carried out in the presence of excess styrene, coupling of DMAD with styrene yielded a conjugated diene compound PhCH=CHC(CO2Me)=CHCO2Me (17). Hydrolysis of 4 yielded the cyclobutenedionyl complex (6) which is a more stablecatalyst for the trimerization of alkyne in aqueous medium. Solid state structures of 3, 4, 5, 6, 8, 10, 14hs, 14ha, 16p, 20 and 27 are determined by single crystal X-ray diffraction analysis.

參考文獻


2. a) Ting, P. C.; Lin, Y. C.; Lee, G. H.; Cheng, M. C.; Wang, Y. J. Am. Chem. Soc. 1996, 118, 6433-6444; b) Ting, P. C.; Lin, Y. C.; Cheng, M. C.; Wang, Y. Organometallics 1994, 13, 2150-2152.
7. a) MacGillivray, L. R.; Papaefstathiou, G. S.; Friscic, T.; Varshney, D. B.; Hamilton, T. D. Templates in Chemistry I 2004, 248, 201-221; b) Toda, F. Acc. Chem. Res. 1995, 28, 480-486; c) Braga, D.; Grepioni, F. Angew. Chem. Int. Edit. 2004, 43, 4002-4011.
8. Desiraju, G. R. Angew. Chem. Int. Edit. 1995, 34, 2311-2327.
10. Georgiev, I. G.; MacGillivray, L. R. Chem. Soc. Rev. 2007, 36, 1239-1248.
11. a) Cohen, M. D. Angew. Chem. Int. Edit. 1975, 14, 386-393; b) Schmidt, G. M. J. Pure Appl. Chem. 1971, 43, 637-678; c) Elgavi, A.; Green, B. S.; Schmidt, G. M. J. J. Am. Chem. Soc. 1973, 95, 2058-2059.

延伸閱讀