透過您的圖書館登入
IP:3.145.64.241
  • 期刊

火炎山礫石型土石流之監測與流動特性分析

The Monitoring and Flow Dynamics of Gravelly Debris Flows

摘要


本文探討苗栗三義火炎山自然保留區礫石型土石流之運動特性及其監測方式,並以2012年06/21及08/02兩次土石流事件進行分析。經由歷年土石流事件期間的實測降雨資料及現地勘查,本文求得火炎山礫石溝發生土石流之有效降雨量門檻值為57.5 mm,之後若超過3 mm/hr之降雨強度即可能觸發土石流。土石流之臨界降雨與土石流之規模有關,一號坑土石流之觸發降雨強度以10分鐘雨量較具代表性。火炎山土石流發生機制主要由上游崩崖料源區之崖錐堆積及溪床土石堆潰決破壞所主導,不同規模的降雨量與料源堆積將控制土石流的流動型態及流出範圍。高累積降雨(約大於300mm)易誘發大規模土石流,其歷程較長,土石流的運動型態偏向稀性礫石土石流,流動過程並造成主河道刷深。中低強度降雨所引起小規模土石流之歷時較短,並呈黏性土石流型態,流動路徑上也明顯有側積堤的地貌。頻譜分析顯示礫石型土石流地聲之特徵頻率介於10-50 Hz,惟測得地聲訊號的強弱及歷程受土石流與測站的距離及其流動規模的影響。

關鍵字

火炎山 礫石層 土石流 降雨臨界線 潰壩

並列摘要


In this study, rainfall-induced debris flows in the Houyenshan gravelly gullies, Miaoli, and the corresponding rainfall threshold conditions are explored. Based on the in-situ rain gauge data from the monitoring system and field surveys during the period from 2006 to 2012, we found the debris flow tends to occur when the total rainfall exceeds 57.5 mm and the subsequent rainfall intensity is higher than 3 mm/hr. Field survey and terrestrial LiDAR measurement indicate the talus deposition in the source areas and outbursts of landslide dams on the gully bed are the dominant factors inducing debris flows. Finally, HHT spectrum analysis of geophone signals for stony debris flows depicts the peak frequencies within the range of 10-50 Hz. The temporal intensity distribution of geophone signals are determined by both the magnitude of debris flows and travel distance with respect to the monitoring station.

被引用紀錄


楊祥霖(2014)。火炎山土石流之現地監測與影像及地聲分析〔碩士論文,國立中央大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0031-0412201512012571

延伸閱讀