透過您的圖書館登入
IP:3.137.180.32
  • 學位論文

狄拉克源電晶體開發及研究

Development and Investigation of Dirac-Source Field-Effect Transistor

指導教授 : 吳肇欣
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著人們對於電子器件功耗的要求日益增加,科學家們持續進行各種嘗試,例如更換材料或是發明新的電晶體架構,使元件的操作電壓降低。狄拉克源(Dirac-source)有別於一般源極材料,其狀態密度與能量呈線性關係。由於這樣的特性,使得狄拉克源在費米能階附近時,具有比傳統材料更窄的電子密度分布,因此讓次臨界擺幅得以突破物理極限之60mV/decade,操作電壓得以有效地下降。 而在本論文中,我們將以二維材料二硫化鉬及二硒化鎢做為通道材料,並結合石墨烯,完成一狄拉克源電晶體。首先,我們先以二硫化鉬做為通道,石墨烯做為源極材料,完成一個二維異質結構電晶體,並與傳統以鈦金做為源極之電晶體進行電性比較。接著,我們以氮化硼(Hexagonal Boron Nitride, h-BN)當作介電層,結合前述之異質結構,完成初版的狄拉克源電晶體。然而,氮化硼之厚度與對準皆不易控制,不適合應用於往後的上閘極元件製作,因此我們改用較常見也較便於製程的原子層沉積 (Atomic layer deposition, ALD)的氧化鋁來當作我們介電層。 然而,由於二維材料表面缺少未鍵結電子對,使得ALD氧化層難以均勻地沉積於材料上。有鑒於此,我們在樣品表面先沉積一層兩奈米厚的種子層(seed layer),成功提升了ALD氧化層的表面品質,亦成功使得上閘極電晶體之開關比達到106。 最後,我們將上閘極介電質的技術,與異質結構電晶體做結合,成功地完成了二硫化鉬及二硒化鎢之狄拉克源電晶體,並看到了次臨界擺幅隨控制閘極之電壓調變而降低的效果,相關的物理機制分析探討亦於內文中詳細介紹。

並列摘要


To meet the need for low power devices, scientists have tried their best to find a new channel material or a new device mechanism, to lower the supply voltage of devices. Dirac-source(DS), different from normal source, has a linear DOS as a function of energy, which gives rise to a much narrower electron density distribution around the Fermi level than conventional source. Because of this characteristic, the device with DS can break the subthreshold swing limit of 60mV/decade and therefore has a lower supply voltage. In this paper, we want to use 2D materials like MoS2 or WSe2 as channel, to fabricate a DS-FET and achieve SS lowering. At the beginning, we will demonstrate graphene-contacted MoS2 back-gate FETs, show the electrical characteristics and compare with Ti-contacted ones. Next, we use hexagonal boron nitride (h-BN) as top-gate dielectric, and combine it with graphene-contacted MoS2 back-gate FET to complete a prototype of DS-FET. However, we find that it is very hard to control the position and thickness of h-BN, so we switch to ALD process to form the top-gate dielectric. Nevertheless, because 2D material lacks of dangling bonds on its surface, we have difficulty forming a uniform ALD Al2O3 film on it. To solve the problem, we evaporate a 2nm E-gun Al2O3 seed layer before ALD process, and successfully improve the quality of the ALD Al2O3 film. We utilize this top-gate dielectric technique to fabricate a 2D top-gate FET with ION/IOFF~106. Finally, we combine top-gate dielectric technique with graphene-contacted MoS2 back-gate FETs, to fabricate MoS2 DS-FET and WSe2 DS-FET. We also complete the measurement and analysis, and the phenomenon of SS lowering is observed with various control-gate biases. Further mechanism and analysis will be introduced in the articles.

參考文獻


1. Skotnicki, T., et al., The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance. IEEE Circuits and Devices Magazine, 2005. 21(1): p. 16-26.
2. Seabaugh, A.C. and Q. Zhang, Low-Voltage Tunnel Transistors for Beyond CMOS Logic. Proceedings of the IEEE, 2010. 98(12): p. 2095-2110.
3. Appenzeller, J., et al., Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors. Physical Review Letters, 2004. 93(19): p. 196805.
4. Ionescu, A.M. and H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011. 479: p. 329.
5. Krishnamohan, T., et al. Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and ≪60mV/dec subthreshold slope. in 2008 IEEE International Electron Devices Meeting. 2008.

延伸閱讀