透過您的圖書館登入
IP:18.224.38.3
  • 學位論文

限制空間下的烯類聚合與共軛高分子之螢光性質

Olefin Polymerization and Fluorescent Properties of Conjugated Polymers in Confined Space

指導教授 : 劉緒宗

摘要


文的研究方向主要有三部份。第一部份:鈀與鎳的雙亞胺催化劑被修飾於矽膠或中孔材料中,並利用來進行乙烯的聚合反應。雙亞胺配基結構上的變化造成催化活性、聚合物分子量與聚合物微觀結構上的影響有詳細討論。對於鈀金屬的聚合反應的進行採用同時加入催化劑與NaBAr’4,鎳金屬為同時加入MAO。論文中也探討了乙烯壓力與溫度對聚合產生的影響,降低壓力與增加壓力會使聚乙烯的支鏈數增加,但對分子量不會有顯著影響。對矽膠表面的催化與孔洞內的催化進行比較,兩者不同在於孔洞內催化所得聚乙烯會在DSC的分析上發現特殊的結晶,矽膠表面的則否。 第二部份:具有規則性的共軛高分子/矽膠奈米複合材料,使用可聚合的含有雙炔基之有機矽氧烷與界面活性劑、TEOS以共縮合的方式合成。界面活性劑對孔洞大小、表面積、結構與修飾量的影響,在文中被詳加討論,陽離子型的界面活性劑於結構上比中性的雙區塊共聚物容易受影響;較大的雙區塊共聚物可以得到較大孔徑的產物,表面積與修飾量則無特定關係。修飾的雙炔基進行聚合形成polydiacetylene/矽膠複合材料,並加以討論螢光性質;螢光強度在移除模版前後會有不同,界面活性劑的存在會降低自淬光情形,產生強度較強的螢光。 第三部份:具有中孔排列的共軛高分子或具有螢光性質的矽膠複合薄膜材料,藉著使用可聚合之疏水性的1,2dialkynylbenzene或染料性質的界面活性劑,做為形成結構與單體來源,以自組裝的方式形成,且薄膜具透光性。自組裝的製程快速,並同時將有機單體含括於規則的無機環境中。包含的1,2dialkynylbenzene進行聚合形成polynaphthanlene/矽膠的奈米復合材料,螢光分析指出當單體包含較電子給予者的取代基如甲氧基時,會有較強螢光強度;但是有拉電子性的取代基如硝基(NO2),螢光強度會減弱。當界面活性劑為包含染料時,可以調整界面活性劑/矽酸溶液的體積比,來增強螢光強度,但是隨之中孔結構也有些釦幭隉C

並列摘要


This thesis is composed of three parts of research involving the chemsitry in confined space. In the first part: palladium and nickel diimine complexes were anchored on the surface of the silica particles and mesoporous channels for the catalysis of the polymerization of ethylene. The active polymerization palladium catalysts were generated in situ by combination of palladium precatalysts with NaBAr’4 and nickel catalysts with MAO. Effects of structure variations of the diimine ligand on catalytic activities, polymer molecular weights, and polymer microstructure were studied. The degree of branching in the polymers decreases with increasing ethylene pressure and with increasing temperature. The difference between silica and mesoporous support polymerization was discussed. In DSC analysis, one can find a good crystallinility of polyethylene from mesoporous support polymerization but not silica particles. In the second part: conjugated polymer/silica nano composites with mesoscopic orderness were synthesized by self-assembly using polymerizable diacetylene’s organosilane molecules as organic source directing condensation with surfactant and TEOS. Effects of molecular size variations of the surfactant on pore size, surface area, and modified content are described. The surfactant with longer chain yielded the desired material with a larger pore size. Thermal polymerization of the incorporated diacetylene moiety resulted in polydiacetylene (PDA)/silica nanocomposites which show their fluorescence properties. The fluorescence intensity depends on the presence of surfactant or not inside the channels. The presence of surfactant in the channels can reduce the self-quenching to have a stronger intensity. In third part: conjugated polymer or dye/silica thin film with mesoscopic orderness were synthesized by using the amphiphilic 1,2-dialkynylbenzene or dye molecules as described in the previous part. The self-assembly process readily incorporates the organic monomers uniformly. Polymerization of the incorporated 1,2-dialkynylbenzene resulted in the formation of polynaphthanlene/silica nanocomposites which were optically transparent. From the luminescence, it was found that the electron-donating group (-OCH3) would give a higher fluorescence intensity, while the electron-with donating group (-NO2) showed the negative effect. The surfactant containing dye moiety could be modulated by changing the surfactant/silicate acid (v/v) ratio to change the fluorescence intensity and the meso-structure.

參考文獻


5. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F.; Schuth, F.; Stucky, G. D. Chem. Mater. 1994, 6, 1176.
6. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. Nature 1994, 368, 317.
9. Moller, K.; Bein, T.; Chem. Mater. 1998, 10, 2950.
11. Zhao, X. S.; Lu, G. Q.; J. Phys. Chem. B 1998, 102, 1556.
12. Antochshuk, V.; Araujo, A. S.; Jaroniec, M. J. Phys. Chem. B 2000, 104, 9713.

延伸閱讀