Title

利用理查森外插法應用於土石流計算

Translated Titles

Applying Richardson Extrapolation to the Simulation of Debris Flow

DOI

10.6342/NTU201703775

Authors

黃治凱

Key Words

土石流 ; 理查森外插法 ; 數值模擬 ; Debris Flow ; Richardson Extrapolation ; Numerical Simulation

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

劉格非

Content Language

繁體中文

Chinese Abstract

台灣地區土石流災害頻繁,一般事前預警的方法之中,土石流計算模擬是其中常見的一種方法,本文根據前人開發出來的模式,藉由粗細兩種網格的操作,計算後進行外插處理,而外插的根據來自於數值離散方式的誤差推導,旨在希望外插後的結果能夠優於原本粗細兩種網格計算的結果。本文先藉由基礎理論的章節,利用三大方程式來進行誤差推導與外插應用,說明方法進行的實際作用,進入土石流相關章節後,詳細推導出模式本身計算上的誤差,再經由不同組實驗,觀察理論與實際結果的吻合程度,來驗證外插法使用的結果。

English Abstract

In this paper, according to the pattern developed by the predecessors, the operation of the two kinds of grids is calculated and the extrapolation is applied to after the calculation of the two kinds of meshes. The extrapolation is based on the error derived from the numerical discretization method, and it is intended that the results after extrapolation be better than the results of the two coarse grid calculations. This paper first uses the three different equations to carry out the error derivation and extrapolation application, illustrating the practical effect of the method. About the relevant sections of the debris flow, the calculation of the error of the model itself is derived. Then by different groups of experiments, Observe the degree of agreement between the theory and the actual results, to verify the results of the use of extrapolation.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. 1. Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne, A. M. (2001). A staggered grid, Lagrangian–Eulerian remap code for 3-D MHD simulations. Journal of Computational Physics, 171(1), 151-181.
    連結:
  2. 2. Berger, M. J., & Oliger, J. (1984). Adaptive mesh refinement for hyperbolic partial differential equations. Journal of computational Physics, 53(3), 484-512.
    連結:
  3. 3. Berti, M., & Simoni, A. (2005). Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides, 2(3), 171-182.
    連結:
  4. 4. Berti, M., Genevois, R., Simoni, A., & Tecca, P. R. (1999). Field observations of a debris flow event in the Dolomites. Geomorphology, 29(3), 265-274.
    連結:
  5. 5. Celik, I., & Karatekin, O. (1997). Numerical experiments on application of Richardson extrapolation with nonuniform grids. Journal of fluids engineering, 119(3), 584-590.
    連結:
  6. 6. Chen, H. X., Zhang, L. M., Zhang, S., Xiang, B., & Wang, X. F. (2013). Hybrid simulation of the initiation and runout characteristics of a catastrophic debris flow. Journal of Mountain Science, 10(2), 219-232.
    連結:
  7. 7. Chen, H., Dadson, S., & Chi, Y. G. (2006). Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology, 77(1), 112-125.
    連結:
  8. 8. Chinni, V. R., Menyuk, C. R., & Wai, P. K. A. (1994). Accurate solution of the paraxial wave equation using Richardson extrapolation. IEEE photonics technology letters, 6(3), 409-411.
    連結:
  9. 9. Dawson, C. N., Wheeler, M. F., & Woodward, C. S. (1998). A two-grid finite difference scheme for nonlinear parabolic equations. SIAM journal on numerical analysis, 35(2), 435-452.
    連結:
  10. 10. Fornberg, B., Zuev, J., & Lee, J. (2007). Stability and accuracy of time-extrapolated ADI-FDTD methods for solving wave equations. Journal of computational and applied mathematics, 200(1), 178-192.
    連結:
  11. 11. Hustedt, B., Operto, S., & Virieux, J. (2004). Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling. Geophysical Journal International, 157(3), 1269-1296.
    連結:
  12. 12. Hutchcraft, W. E., & Gordon, R. K. (2002). Error analysis of higher order wavelet-like basis functions in the finite element method. In System Theory, 2002. Proceedings of the Thirty-Fourth Southeastern Symposium on (pp. 138-141). IEEE.
    連結:
  13. 13. Iverson, R. M. (1997). The physics of debris flows. Reviews of geophysics, 35(3), 245-296.
    連結:
  14. 14. Iverson, R. M., Logan, M., LaHusen, R. G., & Berti, M. (2010). The perfect debris flow? Aggregated results from 28 large‐scale experiments. Journal of Geophysical Research: Earth Surface, 115(F3).
    連結:
  15. 15. Lin, C. W., Shieh, C. L., Yuan, B. D., Shieh, Y. C., Liu, S. H., & Lee, S. Y. (2004). Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering geology, 71(1), 49-61.
    連結:
  16. 17. Liu, J., Nakatani, K., & Mizuyama, T. (2013). Effect assessment of debris flow mitigation works based on numerical simulation by using Kanako 2D. Landslides, 10(2), 161-173.
    連結:
  17. 18. Liu, K. F., & Mei, C. C. (1989). Slow spreading of a sheet of Bingham fluid on an inclined plane. Journal of fluid mechanics, 207, 505-529.
    連結:
  18. 20. MacCormack, R. W. (1982). A numerical method for solving the equations of compressible viscous flow. AIAA journal, 20(9), 1275-1281.
    連結:
  19. 22. Mei, C. C., & Yuhi, M. (2001). Slow flow of a Bingham fluid in a shallow channel of finite width. Journal of Fluid Mechanics, 431, 135-159.
    連結:
  20. 23. Natividad, M. C., & Stynes, M. (2003). Richardson extrapolation for a convection–diffusion problem using a Shishkin mesh. Applied Numerical Mathematics, 45(2-3), 315-329.
    連結:
  21. 24. O'brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 119(2), 244-261.
    連結:
  22. 25. Phillips, T. S., & Roy, C. J. (2014). Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics. Journal of Fluids Engineering, 136(12), 121401.
    連結:
  23. 26. Richards, S. A. (1997). Completed Richardson extrapolation in space and time. Communications in numerical methods in engineering, 13(7), 573-582.
    連結:
  24. 27. Richardson, L. F. (1911). The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 210, 307-357.
    連結:
  25. 28. Richardson, L. F., & Gaunt, J. A. (1927). The deferred approach to the limit. Part I. Single lattice. Part II. Interpenetrating lattices. Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character, 226, 299-361.
    連結:
  26. 29. Rickenmann, D., Laigle, D. M. B. W., McArdell, B. W., & Hübl, J. (2006). Comparison of 2D debris-flow simulation models with field events. Computational Geosciences, 10(2), 241-264.
    連結:
  27. 30. SHIEH, C. L., Chen, Y. S., Tsai, Y. J., & Wu, J. H. (2009). Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China. International Journal of Sediment Research, 24(2), 177-188.
    連結:
  28. 31. Shieh, C. L., Jan, C. D., & Tsai, Y. F. (1996). A numerical simulation of debris flow and its application. Natural Hazards, 13(1), 39-54.
    連結:
  29. 32. Shyy, W., Garbey, M., Appukuttan, A., & Wu, J. (2002). Evaluation of Richardson extrapolation in computational fluid dynamics. Numerical Heat Transfer: Part B: Fundamentals, 41(2), 139-164.
    連結:
  30. 33. Takahashi, T. (2014). Debris flow: mechanics, prediction and countermeasures. CRC press.
    連結:
  31. 35. Verfürth, R. (1994). A posteriori error estimation and adaptive mesh-refinement techniques. Journal of Computational and Applied Mathematics, 50(1-3), 67-83.
    連結:
  32. 36. Wu, Y. H., Liu, K. F., & Chen, Y. C. (2013). Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study. Journal of Mountain Science, 10(2), 293-304.
    連結:
  33. 38. 黃成甲, 許銘熙, & 李懿軒. (2014). 格網局部細化之淹水平行演算模式. 農業工程學報, 60(2), 85-100.
    連結:
  34. 39. 劉格非,「厚泥流流動特性之數值分析」,中國土木水利工程專刊,(1994),第六卷,第二期,第193-203 頁。
    連結:
  35. 16. Liu, E. H. L. (2006). Fundamental methods of numerical extrapolation with applications. Mitopencourseware, Massachusetts Institute Of Technology, 209.
  36. 19. Lynett, P., & Liu, P. L. F. (2002, December). A numerical study of submarine–landslide–generated waves and run–up. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 458, No. 2028, pp. 2885-2910). The Royal Society.
  37. 21. Mark, R. K., & Ellen, S. D. (1995). Statistical and simulation models for mapping debris-flow hazard. In Geographical information systems in assessing natural hazards (pp. 93-106). Springer Netherlands.
  38. 34. Thompson, J. F., Warsi, Z. U., & Mastin, C. W. (1985). Numerical grid generation: foundations and applications (Vol. 45). Amsterdam: North-holland.
  39. 37. 黃名村,「土石流災害範圍之數值模擬及利用微波偵測土石流之研究」,國立台灣大學土木工程學研究所博士論文,2003。