Translated Titles

Research of Curved Microlens Bionic Compound Eye for Imagery Capture System



Key Words

人工複眼 ; 微透鏡陣列 ; 微光機電系統 ; 影像系統 ; artificial compound eye ; microlens array ; MOEMS ; imagery system



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract


English Abstract

The research goal is to develop a bionic compound eye with curved microlens array. In this study, lithography and electroforming technology were used to fabricate planar microlens array mold. The PDMS (Polydimethylsiloxane) was the material for replicating planner microlens array membrane. To make a top hemispheres opening chamber which was replicated from a acrylic mold, then the planar microlens array membrane was placed on the chamber. The syringe was used to draw the air which is in the chamber. The planer microlens array membrane was deformed by pressure difference and it became the curved microlens array. It was combined with the CMOS image sensor to capture images. The achieved FOV of the system is 112°. This study successfully fabricated the apposition microlens array, which has the advantages of simple process, the mold can be reused for rapid forming.

Topic Category 工學院 > 精密工程學系所
工程學 > 工程學總論
  1. [2] M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol., vol. 42, pp. 147-177, 1997.
  2. [3] J.W. Duparre and F.C. Wippermann, “Topical review: Micro-optical artificial compound eyes,” Bioinspiration and Biomimetics, vol. 1, pp. R1-R6, 2006.
  3. [4] J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Applied Optics, vol. 40, pp. 1806-1813, 2001.
  4. [5] R. Horisaki, S. Irie, Y. Ogura and J. Tanida, “There-dimensional information acquisition using a compound imaging system,“ Optical review, vol. 14, No. 5, pp.347-350, 2007.
  5. [7] Z. D. Popovic, R. A. Sprague and G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays,” Applied Optics, vol. 27, pp. 1281-1284, 1988.
  6. [8] Ph Nussbaum, R Volkel, H P Herzig, M Eisner and S Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt., vol. 6, pp. 617-636, 1997.
  7. [9] W. R. Cox, T. Chen and D. Hayes, “Micro-optics fabrication by ink-jet printing,” Optics & Photonics News, vol. 12, pp. 32-35, 2001.
  8. [10] C. S. Lee and C.H. Han, “A novel refractive silicon microlens array using bulk micromachining technology,” Sensors and Actuators A, vol. 88, pp.87-90, 2001.
  9. [11] M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” IEEE Photonics Technology Letters, pp. 7568-7576, 1998.
  10. [12] C. F. Tsou and C. Lin, “A new method for microlens fabrication by a heating encapsulated air process,” IEEE Photonics Technology Letters, vol. 18, pp. 2490-2492, 2006.
  11. [13] C. F. Tsou and C. H. Lin, “An improved process for fabricating microlens array with high fill factor and controllable configuration,” Journal of Microelectromechanical Systems, vol. 17, No.4, pp. 1047-1057, 2008.
  12. [18] D. Zhu, C. Li, X. Zeng and H. Jiang, “Hydrogel-actuated tunable-focus microlens arrays mimicking compound eyes,” IEEE Transducers, pp.2302-2305,2009.
  13. [19] J. Kim, K. H. Jeong and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Optics Letters., vol.30, pp. 5-7, 2005.
  14. [20] K. H. Jeong, J. Kim and L. P. Lee, “Biologically inspired artificial compound eyes,” Science , vol. 312, pp. 557-561, 2006.
  15. [21] J. Duparre, P. Dannberg, P. Schreiber, A. Brauer and A. Tunnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Applied Optics, vol. 43, pp. 4303-4310, 2004.
  16. [23] J. Duparre, P. Schreiber and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. of SPIE, vol.5249, pp. 408-418, 2004.
  17. [27] 劉俊宏,微透鏡仿生複眼影像擷取系統之研究,國立中興大學碩士論文,2010。
  18. [29] 謝昇融,微型醫用鎳質霧化器製作技術研究,國立中興大學碩士論文,2009。
  19. [1] B. Greiner, W. A. Ribi, E. J. Warrant, Cell Tissue Res. 316,377 (2004).
  20. [6] S. Sinzinger and J. Jahns, Microoptics, WILEY-VCH Verlag GmbH, Weinheim, pp. 85-103, 1999.
  21. [14] T. R. Jay and M. B. Sterm, “Step heat-forming photoresist method,” Physical Chemistry Of Surfaces, Opt. Eng., pp. 3547-3552, 1994.
  22. [15] T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, and H. Sato, “Ultraviolet-cured polymer microlens arrays,” Physical Chemistry of Surfaces, Appl. Opt. vol. 38, pp. 2991-2996, 1999.
  23. [16] 張紅鑫、盧振武、王瑞庭、李風有、劉華、孫強,曲面複眼成項系統的研究,光學精密工程,第14卷,第3期,2006年6月。
  24. [17] B. G. Park, K. Choi, C. Jin and H. S. Lee, “Micro lens-on-lens array,” The Royal Society of Chemistry, pp.1751-1755, 2012.
  25. [22] J. Duparre, P. Dannberg, P. Schreiber, A. Brauer and A. Tunnermann, “Thin compound-eye camera,” Applied Optics, vol. 44, pp. 2949-2956, 2005.
  26. [24] E. Hecht, Optics 4th, Addison Wesley, Adelphi University, 2002.
  27. [25] 宋慧琴,眼應用光學基礎,新文京開發出版股份有限公司,2007。
  28. [26] 耿繼業、何建娃,幾何光學,全華科技圖書股份有限公司,2001。
  29. [28] 莊達人,VLSI製造技術,高立圖書有限公司,2000。
Times Cited
  1. 陳彥廷(2013)。以雙層相異親水性材料搭配微孔洞陣列製作微球透鏡陣列。中興大學精密工程學系所學位論文。2013。1-60。
  2. 張簡瑞祈(2016)。多焦點長景深仿生複眼微透鏡。中興大學精密工程學系所學位論文。2016。1-55。