Title

應用無人飛行載具結合大尺度質點影像量測法進行河道物理棲地型態分類

Translated Titles

Classification of River Habitat Using Large-Scale Particle Image Velocimetry with Unmanned Aerial Vehicle

Authors

柯亭羽

Key Words

UAV ; LSPIV ; 棲地型態分類 ; UAV ; LSPIV ; classification of river habitat

PublicationName

中興大學水土保持學系所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

詹勳全

Content Language

繁體中文

Chinese Abstract

一般物理性棲地調查多以手持式量測儀器獲取單點流速水深及底床粒徑等棲地資訊,重覆施測直到將整個分析區域量測完畢,往往需耗費許多人力及時間。本研究嘗試以無人飛行載具進行現地拍攝透過航拍影像分析河道棲地中粗顆粒之粒徑,並結合大尺度質點影像量測法取得河流表面流速,進行河道棲地型態分類,及相關棲地指標計算,希望能取代傳統單點量測方式,減少現場繁複作業,提供棲地調查更有效率之方法。 實驗時於河道中實際量測若干粗顆粒之粒徑尺寸,以便與航拍影像計算值做比較。流速分析則分別利用人工施撒Ecofoam及水流表面自然產生之泡沫做為大尺度質點影像量測法之追蹤質點,並與手持式ADV現場實測流速值進行比較。實驗結果顯示利用影像計算河道中粗顆粒之粒徑與實際量測值誤差為5.4%,而人工施撒粒子進行LSPIV分析及自然追蹤質點進行Unseeded LSPIV分析與ADV實測流速之平均差異分別為0.08m/s與0.06m/s。現場試驗證實,以LSPIV分析與手持式ADV相較,可得到相似之流場資訊,UAV之分析結果可將大範圍河道進行棲地型態分類,相較於以往傳統儀器之棲地調查法,UAV為更有效率及精確之棲地調查方法。

English Abstract

Generally, physical habitat, i.e. flow velocity, flow depth, dimension of sandbar, was surveyed by using handhold equipment. The survey processes were time and cost consuming. This study attempted to apply an unmanned aerial vehicle (UAV) with a camera to record the images of a river. The images were used to measure the sizes of coarse particles and the dimensions of sandbars. Moreover, the surface velocities of river were obtained by large-scale particle image velocimetry (LSPIV) from the images. The information can be used to classify the river habitat. It is expected to simplify the complex process of traditional habitat survey. A field experiment was performed to quantify the habitat survey. The sizes of coarse particles and dimensions of sandbars were measured by a tape measure and images analysis from the UAV. Two tracing particles including the natural and artificial particles were used in the LSPIV analysis. The flow velocities measured by LSPIV were compared with the velocities measured by the handhold Acoustic Doppler Velocimeter (ADV). The results showed the error of particle sizes was about 5.4%. The deviation of velocities measured by LSPIV with artificial particles and ADV was about 0.08m/s, and the deviation of velocities measured by LSPIV with natural particles and handhold ADV was about 0.06m/s. The results of the field experiment showed the LSPIV analysis provided similar flow information with the ADV. The UAV classified the river habitat in a large field. It provided a more efficient and accurate method to obtain river habitat information than using the conventional equipment.

Topic Category 農業暨自然資源學院 > 水土保持學系所
生物農學 > 生物環境與多樣性
Reference
  1. 2. 吳瑞賢、陳芳瑜、溫博文,2007,「台灣河川棲地型態之研究-以卑南溪為例」,2007台灣環境資源永續發展之研討會,6-275。
    連結:
  2. 3. 李明靜,2003,「河川表面流速與流量非接觸式量測方法之發展及應用」,國立成功大學水利及海洋工程研究所博士論文。
    連結:
  3. 5. 施錦揮、游政恭、鄒慶敏、蔡季欣、林志清、林燕山,2010,「無人飛行載具應用於防救災圖資供應之研究-以北二高崩塌地為例」,地籍測量第29卷第3期,17-36。
    連結:
  4. 7. 徐金煌、張國楨,2015,「以Pix4Dmapper進行UAV影像之空間資料產製」,中國土木水利工程學刊,第27卷第3期,241-246。
    連結:
  5. 8. 張東琳,2015,「結合UAV於自動化水質檢測系統」,中國土木水利工程學刊,第27卷第3期,175-182。
    連結:
  6. 9. 張崴,2016,「UAV航拍技術應用於河道變遷土砂監測和山區地形製圖之可行性分析」,國立中興大學水土保持學系碩士論文。
    連結:
  7. 11. 陳英煥、蔡展榮,2008,「空照數位相機拍攝高重疊影像匹配高密度點雲」,航測及遙測學刊,第13卷第3期,219-230。
    連結:
  8. 13. 蔡依庭,2012,「UAV航拍影像點雲產生DSM之研究」,國立台北大學不動產與城鄉環境學系碩士論文
    連結:
  9. 14. 賴建盛,1996,「櫻花鉤吻鮭的物理棲地關係之探討」,地景保育通訊,第4期,10-13。
    連結:
  10. 16. 謝承恩、范書睿、林彥廷、黃文正、羅偉,2016,「無人飛行載具搭載數位相機於地質構造判釋之應用」,航測及遙測學刊,第21卷第4期,257-269。
    連結:
  11. 17. 顏志憲,2015,「地面控制點佈設對無人載具產製DSM精度影響之研究」,國立中興大學水土保持學系碩士論文。
    連結:
  12. 18. Bradley, A. A., Kruger, A., Meselhe, E. A., and Muste, M. V. I., 2002, “Flow Measurement in Streams Using Video Imagery”, Water Resources Research, Vol. 38(12), 15-1.
    連結:
  13. 19. Chen, C. L., 1991, “Unified theory on Power law for Flow resistance”, Journal of Hydraulic Engineering, Vol. 117(3), 371-389.
    連結:
  14. 20. Creutin, J. D., Muste, M., Bradley, A. A., Kim, S. C., and Kruger, A., 2003, “River gauging using PIV techniques: a proof of concept experiment on the Iowa River”, Journal of Hydrology, Vol. 277, 182-194.
    連結:
  15. 21. Crowder, D. W., and Diplas, P., 2000, “Evaluating spatially explicit metrics of stream energy gradients using hydrodynamic model simulations”, Canadian Journal of Fisheries and Aquatic Sciences, Vol. 57, 1497-1507.
    連結:
  16. 22. Crowder, D. W., and Diplas, P., 2002, “Vorticity and circulation: spatial metrics for evaluating flow complexity in stream habitats”, Canadian Journal of Fisheries and Aquatic Sciences, Vol. 59, 633-645.
    連結:
  17. 23. Fujita, I., Muste, M., and Kruger, A., 1998, “Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications”, Journal of Hydraulic Research, Vol. 36(3), 397-414.
    連結:
  18. 24. Fujita, I., and Kunita, Y., 2011, “Application of aerial LSPIV to the 2002 flood of the Yodo River Using a Helicopter Mounted High Density Video Camera”, Journal of Hydro-environment Research Vol. 5, 323-331.
    連結:
  19. 25. He, Z., Wu, W., and Shields, F. D. Jr., 2009, “Numerical analysis of effects of large wood structures on channel morphology and fish habitat suitability in a Southern US sandy creek”, Ecohydrology, Vol. 2, 370-380.
    連結:
  20. 26. Jowett, I. G., 1993, “A method for objectively identifying pool, run, and riffle habitats from physical measurements”, New Zealand Journal of Marine and Freshwater Research, Vol. 27, 241-248.
    連結:
  21. 27. Kim, Y., Muste, M., Hauet, A., Krajewski, W. F., Kruger, A., and Bradley, A., 2008, “Stream Discharge Using Mobile Large-Scale Particle Image Velocimetry: A Proof of Concept”, Water Resources Research, Vol. 44, W09502.
    連結:
  22. 28. Liang, T., and Heipke, C., 1996, “Automatic Relative Orientation of Aerial Images”, Photogrammetric Engineering and Remote Sensing, Vol. 62(1), 47-55.
    連結:
  23. 29. Meselhe, E. A., Peeva, T., and Muste, M., 2004, “Large Scale Particle Image Velocimetry for Low Velocity and Shallow Water Flows”, Journal of Hydraulic Engineering, Vol. 130(9), 937-940.
    連結:
  24. 31. Shields, F. D. Jr., and Rigby, J. R., 2005, “River Habitat Quality from River Velocities Measured Using Acoustic Doppler Current Profiler”, Environmental Management, Vol. 36(4), 565–575.
    連結:
  25. 32. Tauro, F., Grimaldi, S., Petroselli, A., and Porfiri, M., 2012, “Fluorescent particle tracers for surface flow measurements : A proof of concept in a natural stream.” Water Resources Research, Vol. 48, W06528.
    連結:
  26. 33. Tennant, D.L., 1976, “ Instream Flow Requirements for Fish, Wildlife, Recreation and Related Environmental Resources”, Fisheries, Vol. 1(4), 6-10.
    連結:
  27. 35. Zhang, Z., Wang, X., Fan, T., and Xu, L., 2013, “River Surface Target Enhancement and Background Suppression For Unseeded LSPIV”, Flow Measurement and Instrumentation , Vol. 30, 99-111.
    連結:
  28. 1. 何維信,1995,「航空攝影測量學」,大中國圖書公司。
  29. 4. 汪靜明,2000,「大甲溪水資源環境教育」,經濟部水資源局,水資源環境教育計畫教材。
  30. 6. 徐百輝,2013,「無人飛行載具簡介及其於測繪領域之應用」,杜風電子報,http://www.ntuce-newsletter.tw/edm/vol.67/T4_1n.html。
  31. 10. 莊明德、周文杰、李德旺、柴家豪,2014,「應用河川棲地多樣性評估河川生態流量-以烏溪大旗橋河段為例」,台灣水利,第62卷第2期,82-89。
  32. 12. 詹勳全、吳沛芸、吳子佳、李明靜,2016,「無人載具大尺度質點影像量測系統研發與初步測試」,台灣水利,第64卷第1期,80-89。
  33. 15. 錢寧、萬兆惠,1991,泥沙運動力學,科學出版社,206-209。
  34. 30. Patalano, A., Garcia, C. M., Brevis, W., Bleninger, T., Guillen, N., Moreno, L., and Rodriguez, A., 2015, “Recent Advances In Eulerian and Lagragian Large-Scale Particle Image Velocimetry”, E-proceedings of the 36th IAHR World Congress, 1-6.
  35. 34. Wang, F., Xu, B., Xu, M., Shi, J., Jia, L., and Li, C., 2013, “A Large-Scale Particle Image Velocimetry System Based on Dual-camera Field of View Stitching”, Sensors & Transducers, Vol. 157(10), 234-239.