Title

以蛋白質交互作用分析在農桿菌感染過程中AtRTNLB1-8與AtRab8B之功能

Translated Titles

Protein interaction study of AtRTNLB1-8 and AtRab8B functions during Agrobacterium infection process

Authors

黃凡真

Key Words

阿拉伯芥 ; 農桿菌 ; RTNLB ; Arabidopsis ; Agrobacterium ; RTNLB

PublicationName

中興大學生命科學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

黃皓瑄

Content Language

繁體中文

Chinese Abstract

農桿菌(Agrobacterium tumefaciens)是一種可跨”界”(kingdom)轉移自身遺傳物質至真核生物中之植物病原菌,其基因體組成除了一線狀及環狀染色體外,尚有pAtC58與pTiC58兩個質體。Ti質體(tumor-inducing plasmid)上含有一段T-DNA (transfer DNA),可藉由第四型分泌系統(type IV secretion system,T4SS)輸出進入植物細胞中。T4SS是由農桿菌的致病蛋白質(virulence protein,Vir)VirB1-11及VirD4所組成,因此又稱為VirB/D4輸出系統。另外,在Ti質體上的致病基因表現區(vir region)中,包含了感染植物過程所需的致病基因,分別參與了植物訊息的辨認、T-DNA的產生、轉移、進入植物細胞及到達植物細胞核的過程,使得T-DNA可成功地嵌入植物染色體中及表現。而在T-DNA由農桿菌轉移至植物細胞的過程中,T4SS扮演了非常重要的角色,而其中的T線毛構造雖有研究指出並非T-DNA轉移的必要條件,但組成T線毛(T-pilus)的VirB2、VirB5與VirB7若缺乏,則造成農桿菌喪失致病力。而在農桿菌感染植物的過程中,植物中的蛋白質可被農桿菌利用,目前已知阿拉伯芥中的AtRTNLB1、2、4及AtRab8B皆可與農桿菌的VirB2相互結合,故本研究利用雙分子螢光互補(bimolecular fluorescence complementation,BiFC)實驗檢測蛋白質間的交互關係,檢測結果顯示AtRTNLB1、2、4與AtRab8B可於原生質體中相互結合,可知此四個蛋白質應可在植物細胞形成一複合體,在植物細胞中共同作用。並且已知在大量表現AtRTNLB1、2或4轉殖株中其被農桿菌感染的效率顯著提升。因此進一步以反轉錄聚合酶連鎖反應(reverse transcription polymerase chain reaction,RT-PCR)檢測病原菌相關基因(pathogen-related genes 1-5,PR1-5)與植物防禦基因(plant defensin 1.2,PDF1.2) 在上述轉殖株中的基因表現量有無改變。在大量表現AtRTNLB1、2或4之轉殖株中,PR1-5及PDF1.2基因的表現量整體有下降的趨勢。另外,為了檢測AtRTNLB家族其他成員是否亦參與農桿菌的感染過程,因此利用酵母菌雙雜合實驗檢測AtRTNLB3、5-8與農桿菌致病蛋白質或AtRab8B的交互作用,結果顯示只有AtRTNLB8可與VirB2或AtRab8B相互結合,因此推測AtRTNLB8較可能參與農菌感染植物的過程。此外針對AtRTNLB8、9、10及13突變株進行農桿菌感染分析實驗,實驗結果顯示上述突變株其短暫表現T-DNA的能力或被野生種農桿菌感染後產生腫瘤的效率,與野生株相較降低的幅度僅限於10-30%,亦或無明顯差異;可知當突變株中只有AtRTNLB8、9、10或13基因功能缺失時,可能不會對農桿菌感染此植株能力造成顯著影響。

English Abstract

Agrobacterium tumefaciens is a plant pathogen that can transfer its own genetic material into eukaryotic cells. The A. tumefaciens genome consists of a linear and a circular chromosomes, and two plasmids, pAtC58 and pTiC58. The tumor-inducing (Ti) plasmid contains a specific DNA region, transfer DNA (T-DNA), which can be export and transfer into plant cells by a type IV secretion system (T4SS). The A. tumefaciens T4SS, also called the VirB/D4 transport system, is composed of VirB1-11 and VirD4 proteins. The Ti plasmid also contains several virulence (vir) genes that are responsible for T-DNA processing, transferring from bacteria into plant cells, nuclear targeting, and finally integration into plant chromosome. During A. tumefaciens infections, the T4SS mediates T-DNA and Vir proteins export. Although the T-pilus has been reported that might not be necessary for T-DNA transfers, the components of T-pilus, VirB2, VirB5, and VirB7, are essential for A. tumefaciens virulence. A previous study showed that Arabidopsis proteins, AtRTNLB1, 2, 4, and AtRab8B, interact with VirB2 in yeast and in vitro. In order to understand further the interactions between AtRTNLB1, 2, 4, and AtRab8B in plant cells, bimolecular fluorescence complementation (BiFC) tests were utilized and demonstrated that AtRTNLB1, 2, 4, and AtRab8B may form a protein complex in plant protoplasts. The over-expression AtRTNLB1, 2 or 4 transgenic plants were hyper-susceptible to Agrobacterium-mediated plant transformation. We therefore performed RT-PCR to determine RNA accumulation levels of the pathogen-related gene 1-5 (PR1-5) and plant defesin gene 1.2 (PDF1.2) in both over-expression transgenic plants and wild-type plants. Most of the PR1-5 and PDF1.2 genes RNA accumulated more in over-expression AtRTNLB1, 2 or 4 transgenic lines than in wild-type plants. Additionally, in order to determine if other members of AtRTNLB participate A. tumefaciens transformation process, we cloned AtRTNLB3, and 5-8 genes from Arabidopsis and performed yeast-two hybrid assays between RTNLB3, 5-8 and several Vir proteins. So far, only AtRTNLB8 interacted with either VirB2 or AtRab8B, suggesting that AtRTNLB8 may be involved in Agrobacterium transformation process. We also examined Agrobacterium infection abilities of the Arabidopsis rtnlb8, rtnlb9, rtnlb10, and rtnlb13 T-DNA insertion mutants The transient and stable transformation efficiencies of some of these mutants showed only slightly 10-30% reductions in comparison to wild-type plants. These results suggest when either the AtRTNLB8-10, or 13 gene expression was affected due to the T-DNA insertion, the Agrobacterium-mediated plant transformation process might no significantly affected in these mutants.

Topic Category 生命科學院 > 生命科學系所
生物農學 > 生物科學
Reference
  1. 1. 張耀仁。(2008)。阿拉伯芥RTNLB2與RTNLB4蛋白質於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文
    連結:
  2. 2. 盧毓。(2010)。阿拉伯芥AtRab8蛋白質家族於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文
    連結:
  3. 3. 傅碧汝。(2010)。阿拉伯芥AtRTNLB1至AtRTNLB7基因家族於土壤農桿菌感染植物過程之功能分析。國立中興大學生命科學所 碩士論文
    連結:
  4. 4. Ausubel, F.M. (2003). Current Protocols in Molecular Biology, F.M. Ausubel, R. Brent, R.E. Kingston, D.D.Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds (New York: John Wiley & Sons).
    連結:
  5. 5. Golemis, E., Gyuris, J., and Brent, R. (1994). In Current Protocols in Molecular Biology, F.M. Ausubel, R. Brent, R.E. Kingston, D.D.Moore, J.G. Seidman, J.A. Smith, and K. Struhl, eds (New York: John Wiley & Sons).
    連結:
  6. 8. Strober, W. (2001). Monitoring cell growth. In Current protocols in immunology. Appendix 3A, J.E. Coligan, B.E. Bierer, D.H. Margulies, E.M. Sherach, and W. Strober, eds (Maryland, USA: John Wiley and Sons), pp. 3A.1-3A.2.
    連結:
  7. 9. Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W., and Gordon, M.P. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A 81, 5994-5998.
    連結:
  8. 10. Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E.,and Ryals, J. (1993). Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A 90, 7327-7331.
    連結:
  9. 11. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.
    連結:
  10. 12. Alvarez-Martinez, C.E., and Christie, P.J. (2009). Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73, 775-808.
    連結:
  11. 13. Aly, K.A., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766-3775.
    連結:
  12. 14. Anand, A., Uppalapati, S.R., Ryu, C.M., Allen, S.N., Kang, L., Tang, Y., and Mysore, K.S. (2008). Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146, 703-715.
    連結:
  13. 15. Ananiadou, S., Sullivan, D., Black, W., Levow, G.A., Gillespie, J.J., Mao, C., Pyysalo, S., Kolluru, B., Tsujii, J., and Sobral, B. (2011). Named entity recognition for bacterial Type IV secretion systems. PLoS One 6, e14780.
    連結:
  14. 16. Anderson, L.B., Hertzel, A.V., and Das, A. (1996). Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci U S A 93, 8889-8894.
    連結:
  15. 17. Atmakuri, K., Cascales, E., and Christie, P.J. (2004). Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol Microbiol 54, 1199-1211.
    連結:
  16. 18. Atmakuri, K., Ding, Z., and Christie, P.J. (2003). VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Molecular Microbiology 49, 1699-1713.
    連結:
  17. 19. Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 6, 973-979.
    連結:
  18. 20. Balbi, V., and Devoto, A. (2008). Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177, 301-318.
    連結:
  19. 21. Bako, L., Umeda, M., Tiburcio, A.F., Schell, J., and Koncz, C. (2003). The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci U S A 100, 10108-10113.
    連結:
  20. 22. Baldini, G., Hohl, T., Lin, H.Y., and Lodish, H.F. (1992). Cloning of a Rab3 isotype predominantly expressed in adipocytes. Proc Natl Acad Sci U S A 89, 5049-5052.
    連結:
  21. 23. Ballas, N., and Citovsky, V. (1997). Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci U S A 94, 10723-10728.
    連結:
  22. 24. Bailey, S., Ward, D., Middleton, R., Grossmann, J.G., and Zambryski, P.C. (2006). Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci U S A 103, 2582-2587.
    連結:
  23. 25. Baron, C., Llosa, M., Zhou, S., and Zambryski, P.C. (1997a). VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. J Bacteriol 179, 1203-1210.
    連結:
  24. 26. Baron, C., Thorstenson, Y.R., and Zambryski, P.C. (1997b). The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens. J Bacteriol 179, 1211-1218.
    連結:
  25. 27. Baron, C., and Zambryski, P.C. (1995). The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet 29, 107-129.
    連結:
  26. 28. Bayliss, R., Harris, R., Coutte, L., Monier, A., Fronzes, R., Christie, P.J., Driscoll, P.C., and Waksman, G. (2007). NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. Proc Natl Acad Sci U S A 104, 1673-1678.
    連結:
  27. 29. Beaupre, C.E., Bohne, J., Dale, E.M., and Binns, A.N. (1997). Interactions between VirB9 and VirB10 membrane proteins involved in movement of DNA from Agrobacterium tumefaciens into plant cells. J Bacteriol 179, 78-89.
    連結:
  28. 30. Berger, B.R., and Christie, P.J. (1994). Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176, 3646-3660.
    連結:
  29. 31. Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62, 293-300.
    連結:
  30. 32. Bertani, G. (2004). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 186, 595-600.
    連結:
  31. 33. Bhattacharjee, S., Lee, L.Y., Oltmanns, H., Cao, H., Veena, Cuperus, J., and Gelvin, S.B. (2008). IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20, 2661-2680.
    連結:
  32. 34. Bi, Y.M., Kenton, P., Mur, L., Darby, R., and Draper, J. (1995). Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J 8, 235-245.
    連結:
  33. 35. Bittel, P., and Robatzek, S. (2007). Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol 10, 335-341.
    連結:
  34. 36. Bogdanove, A.J., and Martin, G.B. (2000). AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proc Natl Acad Sci U S A 97, 8836-8840.
    連結:
  35. 37. Boller, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406.
    連結:
  36. 38. Boller, T., and He, S.Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324, 742-744.
    連結:
  37. 39. Bourne, H.R., Sanders, D.A., and McCormick, F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125-132.
    連結:
  38. 40. Brencic, A., and Winans, S.C. (2005). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69, 155-194.
    連結:
  39. 41. Broekaert, W.F., Delaure, S.L., De Bolle, M.F., and Cammue, B.P. (2006). The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44, 393-416.
    連結:
  40. 42. Broekaert, W.F., Terras, F.R., Cammue, B.P., and Osborn, R.W. (1995). Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108, 1353-1358.
    連結:
  41. 43. Browse, J., and Howe, G.A. (2008). New weapons and a rapid response against insect attack. Plant Physiol 146, 832-838.
    連結:
  42. 45. Bulgakov, V.P., Kiselev, K.V., Yakovlev, K.V., Zhuravlev, Y.N., Gontcharov, A.A., and Odintsova, N.A. (2006). Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1, 454-461.
    連結:
  43. 46. Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6, 1583-1592.
    連結:
  44. 47. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88, 57-63.
    連結:
  45. 49. Caporale, C., Di Berardino, I., Leonardi, L., Bertini, L., Cascone, A., Buonocore, V., and Caruso, C. (2004). Wheat pathogenesis-related proteins of class 4 have ribonuclease activity. FEBS Lett 575, 71-76.
    連結:
  46. 50. Cascales, E., and Christie, P.J. (2004a). Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci U S A 101, 17228-17233.
    連結:
  47. 51. Cascales, E., and Christie, P.J. (2004b). Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304, 1170-1173.
    連結:
  48. 52. Chandran, V., Fronzes, R., Duquerroy, S., Cronin, N., Navaza, J., and Waksman, G. (2009). Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011-1015.
    連結:
  49. 53. Chang, C.H., and Winans, S.C. (1992). Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 174, 7033-7039.
    連結:
  50. 55. Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., and Schwab, M.E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439.
    連結:
  51. 56. Chen, Y.T., Holcomb, C., and Moore, H.P. (1993). Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag. Proc Natl Acad Sci U S A 90, 6508-6512.
    連結:
  52. 57. Chen, Z., Malamy, J., Henning, J., Conrath, U., Sanchez-Casas, P., Silva, H., Ricigliano, J., and Klessig, D.K. (1995). Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc Natl Acad Sci U S A 92, 4134-4137.
    連結:
  53. 58. Chen, Z., Silva, H., and Klessig, D.F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262, 1883-1886.
    連結:
  54. 59. Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006). The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465-476.
    連結:
  55. 60. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500.
    連結:
  56. 62. Christie, P.J. (1997). Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J Bacteriol 179, 3085-3094.
    連結:
  57. 63. Christie, P.J. (2004). Type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochim Biophys Acta 1694, 219-234.
    連結:
  58. 64. Christie, P.J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., and Cascales, E. (2005). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59, 451-485.
    連結:
  59. 65. Christie, P.J., and Cascales, E. (2005). Structural and dynamic properties of bacterial type IV secretion systems. Mol Membr Biol 22, 51-61.
    連結:
  60. 66. Christie, P.J., Ward, J.E., Jr., Gordon, M.P., and Nester, E.W. (1989). A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc Natl Acad Sci U S A 86, 9677-9681.
    連結:
  61. 67. Citovsky, V., Guralnick, B., Simon, M.N., and Wall, J.S. (1997). The molecular structure of Agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. J Mol Biol 271, 718-727.
    連結:
  62. 68. Citovsky, V., Kapelnikov, A., Oliel, S., Zakai, N., Rojas, M.R., Gilbertson, R.L., Tzfira, T., and Loyter, A. (2004). Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 279, 29528-29533.
    連結:
  63. 69. Citovsky, V., Kozlovsky, S.V., Lacroix, B., Zaltsman, A., Dafny-Yelin, M., Vyas, S., Tovkach, A., and Tzfira, T. (2007). Biological systems of the host cell involved in Agrobacterium infection. Cellular Microbiology 9, 9-20.
    連結:
  64. 70. Citovsky, V., Lee, L.Y., Vyas, S., Glick, E., Chen, M.H., Vainstein, A., Gafni, Y., Gelvin, S.B., and Tzfira, T. (2006). Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362, 1120-1131.
    連結:
  65. 71. Citovsky, V., Wong, M.L., and Zambryski, P. (1989). Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci U S A 86, 1193-1197.
    連結:
  66. 72. Citovsky, V., Zaltsman, A., Kozlovsky, S.V., Gafni, Y., and Krichevsky, A. (2009). Proteasomal degradation in plant-pathogen interactions. Semin Cell Dev Biol 20, 1048-1054.
    連結:
  67. 73. Clarke, J.D., Volko, S.M., Ledford, H., Ausubel, F.M., and Dong, X. (2000). Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12, 2175-2190.
    連結:
  68. 74. Close, T.J., Tait, R.C., Rempel, H.C., Hirooka, T., Kim, L., and Kado, C.I. (1987). Molecular characterization of the virC genes of the Ti plasmid. J Bacteriol 169, 2336-2344.
    連結:
  69. 75. Dang, T.A., and Christie, P.J. (1997). The VirB4 ATPase of Agrobacterium tumefaciens is a cytoplasmic membrane protein exposed at the periplasmic surface. J Bacteriol 179, 453-462.
    連結:
  70. 76. Danhorn, T., and Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61, 401-422.
    連結:
  71. 77. Das, A., and Xie, Y.H. (2000). The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J Bacteriol 182, 758-763.
    連結:
  72. 78. De Buck, S., Jacobs, A., Van Montagu, M., and Depicker, A. (1999). The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J 20, 295-304.
    連結:
  73. 79. de Groot, M.J., Bundock, P., Hooykaas, P.J., and Beijersbergen, A.G. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16, 839-842.
    連結:
  74. 80. De Neve, M., De Buck, S., Jacobs, A., Van Montagu, M., and Depicker, A. (1997). T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11, 15-29.
    連結:
  75. 81. De Vos, M., Van Oosten, V.R., Van Poecke, R.M., Van Pelt, J.A., Pozo, M.J., Mueller, M.J., Buchala, A.J., Metraux, J.P., Van Loon, L.C., Dicke, M., and Pieterse, C. M. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18, 923-937.
    連結:
  76. 82. DeCleene, M., and DelLey, J. (1976). The host range of crown gall. Bot Rev 42, 389-466.
    連結:
  77. 83. Delaney, T.P., Friedrich, L., and Ryals, J.A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92, 6602-6606.
    連結:
  78. 85. Deng, W., Chen, L., Peng, W.T., Liang, X., Sekiguchi, S., Gordon, M.P., Comai, L., and Nester, E.W. (1999). VirE1 is a specific molecular chaperone for the exported single-stranded-DNA-binding protein VirE2 in Agrobacterium. Mol Microbiol 31, 1795-1807.
    連結:
  79. 86. Devoto, A., Nieto-Rostro, M., Xie, D., Ellis, C., Harmston, R., Patrick, E., Davis, J., Sherratt, L., Coleman, M., and Turner, J.G. (2002). COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32, 457-466.
    連結:
  80. 87. Diekmann, H., Klinger, M., Oertle, T., Heinz, D., Pogoda, H.M., Schwab, M.E., and Stuermer, C.A. (2005). Analysis of the reticulon gene family demonstrates the absence of the neurite growth inhibitor Nogo-A in fish. Mol Biol Evol 22, 1635-1648.
    連結:
  81. 88. Ding, Z., Zhao, Z., Jakubowski, S.J., Krishnamohan, A., Margolin, W., and Christie, P.J. (2002). A novel cytology-based, two-hybrid screen for bacteria applied to protein-protein interaction studies of a type IV secretion system. J Bacteriol 184, 5572-5582.
    連結:
  82. 89. Ditt, R.F., Nester, E.W., and Comai, L. (2001). Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 98, 10954-10959.
    連結:
  83. 90. Djamei, A., Pitzschke, A., Nakagami, H., Rajh, I., and Hirt, H. (2007). Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318, 453-456.
    連結:
  84. 91. Dong, X. (2001). Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4, 309-314.
    連結:
  85. 92. Dong, X. (2004). NPR1, all things considered. Curr Opin Plant Biol 7, 547-552.
    連結:
  86. 93. Dong, X., Li, X., Zhang, Y., Fan, W., Kinkema, M., and Clarke, J. (2001). Regulation of systemic acquired resistance by NPR1 and its partners. Novartis Found Symp 236, 165-173; discussion 173-165.
    連結:
  87. 94. Duckely, M., and Hohn, B. (2003). The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 223, 1-6.
    連結:
  88. 95. Duckely, M., Oomen, C., Axthelm, F., Van Gelder, P., Waksman, G., and Engel, A. (2005). The VirE1/VirE2 complex of Agrobacterium tumefaciens interacts with single-stranded DNA and forms channels. Mol Microbiol 58, 1130-1142.
    連結:
  89. 96. Dumas, F., Duckely, M., Pelczar, P., Van Gelder, P., and Hohn B. (2001). An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci U S A 98, 485-490.
    連結:
  90. 97. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu Rev Phytopathol 42, 185-209.
    連結:
  91. 98. Durrenberger, F., Crameri, A., Hohn, B., and Koukolikova-Nicola, Z. (1989). Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc Natl Acad Sci U S A 86, 9154-9158.
    連結:
  92. 99. Eisenbrandt, R., Kalkum, M., Lai, E.M., Lurz, R., Kado, C.I., and Lanka, E. (1999). Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274, 22548-22555.
    連結:
  93. 101. Engstrom, P., Zambryski, P., Van Montagu, M., and Stachel, S. (1987). Characterization of Agrobacterium tumefaciens virulence proteins induced by the plant factor acetosyringone. J Mol Biol 197, 635-645.
    連結:
  94. 102. Fan, W., and Dong, X. (2002). In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14, 1377-1389.
    連結:
  95. 103. Felix, G., and Boller, T. (2003). Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278, 6201-6208.
    連結:
  96. 104. Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18, 265-276.
    連結:
  97. 105. Fernandez, D., Dang, T.A., Spudich, G.M., Zhou, X.R., Berger, B.R., and Christie, P.J. (1996a). The Agrobacterium tumefaciens virB7 gene product, a proposed component of the T-complex transport apparatus, is a membrane-associated lipoprotein exposed at the periplasmic surface. J Bacteriol 178, 3156-3167.
    連結:
  98. 106. Fernandez, D., Spudich, G.M., Zhou, X.R., and Christie, P.J. (1996b). The Agrobacterium tumefaciens VirB7 lipoprotein is required for stabilization of VirB proteins during assembly of the T-complex transport apparatus. J Bacteriol 178, 3168-3176.
    連結:
  99. 107. Finberg, K.E., Muth, T.R., Young, S.P., Maken, J.B., Heitritter, S.M., Binns, A.N., and Banta, L.M. (1995). Interactions of VirB9, -10, and -11 with the membrane fraction of Agrobacterium tumefaciens: solubility studies provide evidence for tight associations. J Bacteriol 177, 4881-4889.
    連結:
  100. 108. Fonseca, S., Chico, J.M., and Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12, 539-547.
    連結:
  101. 109. Friesner, J., and Britt, A.B. (2003). Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34, 427-440.
    連結:
  102. 110. Fronzes, R., Christie, P.J., and Waksman, G. (2009a). The structural biology of type IV secretion systems. Nat Rev Microbiol 7, 703-714.
    連結:
  103. 111. Fronzes, R., Schafer, E., Wang, L., Saibil, H.R., Orlova, E.V., and Waksman, G. (2009b). Structure of a type IV secretion system core complex. Science 323, 266-268.
    連結:
  104. 113. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754-756.
    連結:
  105. 114. Gallego, M.E., Bleuyard, J.Y., Daoudal-Cotterell, S., Jallut, N., and White, C.I. (2003). Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35, 557-565.
    連結:
  106. 115. Gamborg, O.L., Miller, R.A., and Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50, 151-158.
    連結:
  107. 116. Gao, R., Mukhopadhyay, A., Fang, F., and Lynn, D.G. (2006). Constitutive activation of two-component response regulators: characterization of VirG activation in agrobacterium tumefaciens. J Bacteriol 188, 5204-5211.
    連結:
  108. 117. Garcia-Rodriguez, F.M., Schrammeijer, B., and Hooykaas, P.J.J. (2006). The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic Acids Res 34, 6496-6504.
    連結:
  109. 118. Gaspar, Y.M., Nam, J., Schultz, C.J., Lee, L.Y., Gilson, P.R., Gelvin, S.B., and Bacic, A. (2004). Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of Agrobacterium transformation. Plant Physiol 135, 2162-2171.
    連結:
  110. 119. Gelvin, S.B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51, 223-256.
    連結:
  111. 120. Gelvin, S.B. (2010). Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48, 45-68.
    連結:
  112. 121. Ghomashchi, F., Zhang, X., Liu, L., and Gelb, M.H. (1995). Binding of prenylated and polybasic peptides to membranes: affinities and intervesicle exchange. Biochemistry 34, 11910-11918.
    連結:
  113. 122. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43, 205-227.
    連結:
  114. 124. Gietl, C., Koukolikova-Nicola, Z., and Hohn, B. (1987). Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc Natl Acad Sci U S A 84, 9006-9010.
    連結:
  115. 126. Gomez-Gomez, L., Bauer, Z., and Boller, T. (2001). Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13, 1155-1163.
    連結:
  116. 127. Gomez-Gomez, L., Felix, G., and Boller, T. (1999). A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18, 277-284.
    連結:
  117. 129. Gouka, R.J., Gerk, C., Hooykaas, P.J., Bundock, P., Musters, W., Verrips, C.T., and de Groot, M.J. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17, 598-601.
    連結:
  118. 130. GrandPre, T., Li, S., and Strittmatter, S.M. (2002). Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547-551.
    連結:
  119. 131. GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M. (2000). Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 403, 439-444.
    連結:
  120. 132. Gray, W.M. (2002). Plant defence: a new weapon in the arsenal. Curr Biol 12, 352-354.
    連結:
  121. 133. Gu, Y.Q., Yang, C., Thara, V.K., Zhou, J., and Martin, G.B. (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12, 771-786.
    連結:
  122. 134. Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95-108.
    連結:
  123. 135. Hammond-Kosack, K.E., and Jones, J.D. (1996). Resistance gene-dependent plant defense responses. Plant Cell 8, 1773-1791.
    連結:
  124. 136. Hamilton, C.M., Lee, H., Li, P.L., Cook, D.M., Piper, K.R., von Bodman, S.B., Lanka, E., Ream, W., and Farrand, S.K. (2000). TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182, 1541-1548.
    連結:
  125. 137. Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci U S A 104, 12217-12222.
    連結:
  126. 138. Hapfelmeier, S., Domke, N., Zambryski, P.C., and Baron, C. (2000). VirB6 is required for stabilization of VirB5 and VirB3 and formation of VirB7 homodimers in Agrobacterium tumefaciens. J Bacteriol 182, 4505-4511.
    連結:
  127. 139. Hepburn, A.G., White, J., Pearson, L., Maunders, M.J., Clarke, L.E., Prescott, A.G., and Blundy, K.S. (1985). The use of pNJ5000 as an intermediate vector for the genetic manipulation of Agrobacterium Ti-plasmids. J Gen Microbiol 131, 2961-2969.
    連結:
  128. 141. Howard, E.A., Winsor, B.A., De Vos, G., and Zambryski, P. (1989). Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: Tight association of VirD2 with the 5' ends of T-strands. Proc Natl Acad Sci U S A 86, 4017-4021.
    連結:
  129. 142. Howard, E.A., Zupan, J.R., Citovsky, V., and Zambryski, P.C. (1992). The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68, 109-118.
    連結:
  130. 143. Huang, Y., Morel, P., Powell, B., and Kado, C.I. (1990). VirA, a coregulator of Ti-specified virulence genes, is phosphorylated in vitro. J Bacteriol 172, 1142-1144.
    連結:
  131. 144. Huber, L.A., de Hoop, M.J., Dupree, P., Zerial, M., Simons, K., and Dotti, C. (1993a). Protein transport to the dendritic plasma membrane of cultured neurons is regulated by Rab8p. J Cell Biol 123, 47-55.
    連結:
  132. 145. Huber, L.A., Pimplikar, S., Parton, R.G., Virta, H., Zerial, M., and Simons, K. (1993b). Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol 123, 35-45.
    連結:
  133. 146. Huber, A.B., and Schwab, M.E. (2000). Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem 381, 407-419.
    連結:
  134. 147. Hwang, H.H., and Gelvin, S.B. (2004). Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16, 3148-3167.
    連結:
  135. 148. Jakubowski, S.J., Cascales, E., Krishnamoorthy, V., and Christie, P.J. (2005). Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187, 3486-3495.
    連結:
  136. 149. Jakubowski, S.J., Kerr, J.E., Garza, I., Krishnamoorthy, V., Bayliss, R., Waksman, G., and Christie, P.J. (2009). Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Mol Microbiol 71, 779-794.
    連結:
  137. 150. Jakubowski, S.J., Krishnamoorthy, V., Cascales, E., and Christie, P.J. (2004). Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. J Mol Biol 341, 961-977.
    連結:
  138. 151. Jarchow, E., Grimsley, N.H., and Hohn, B. (1991). virF, the host-range-determining virulence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proc Natl Acad Sci U S A 88, 10426-10430.
    連結:
  139. 152. Jayaswal, R.K., Veluthambi, K., Gelvin, S.B., and Slightom, J.L. (1987). Double-stranded cleavage of T-DNA and generation of single-stranded T-DNA molecules in Escherichia coli by a virD-encoded border-specific endonuclease from Agrobacterium tumefaciens. J Bacteriol 169, 5035-5045.
    連結:
  140. 153. Jin, S., Roitsch, T., Ankenbauer, R.G., Gordon, M.P., and Nester, E.W. (1990a). The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J Bacteriol 172, 525-530.
    連結:
  141. 154. Jin, S.G., Prusti, R.K., Roitsch, T., Ankenbauer, R.G., and Nester, E.W. (1990b). Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. J Bacteriol 172, 4945-4950.
    連結:
  142. 155. Jin, S.G., Roitsch, T., Christie, P.J., and Nester, E.W. (1990c). The regulatory VirG protein specifically binds to a cis-acting regulatory sequence involved in transcriptional activation of Agrobacterium tumefaciens virulence genes. J Bacteriol 172, 531-537.
    連結:
  143. 156. Johnson, C., Boden, E., and Arias, J. (2003). Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis. Plant Cell 15, 1846-1858.
    連結:
  144. 157. Jones, A.L., Shirasu, K., and Kado, C.I. (1994). The product of the virB4 gene of Agrobacterium tumefaciens promotes accumulation of VirB3 protein. J Bacteriol 176, 5255-5261.
    連結:
  145. 158. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329.
    連結:
  146. 159. Judd, P.K., Mahli, D., and Das, A. (2005). Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6. Microbiology 151, 3483-3492.
    連結:
  147. 160. Kachroo, P., Yoshioka, K., Shah, J., Dooner, H.K., and Klessig, D.F. (2000). Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent. Plant Cell 12, 677-690.
    連結:
  148. 161. Kahl, J., Siemens, D.H., Aerts, R.J., Gabler, R., Kuhnemann, F., Preston, C.A., and Baldwin, I.T. (2000). Herbivore-induced ethylene suppresses a direct defense but not a putative indirect defense against an adapted herbivore. Planta 210, 336-342.
    連結:
  149. 162. Kang, L., Tang, X., and Mysore, K.S. (2004). Pseudomonas Type III effector AvrPto suppresses the programmed cell death induced by two nonhost pathogens in Nicotiana benthamiana and tomato. Mol Plant Microbe Interact 17, 1328-1336.
    連結:
  150. 163. Katsir, L., Chung, H.S., Koo, A.J., and Howe, G.A. (2008a). Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11, 428-435.
    連結:
  151. 164. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y., and Howe, G.A. (2008b). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A 105, 7100-7105.
    連結:
  152. 165. Kauffmann, S., Legrand, M., Geoffroy, P., and Fritig, B. (1987). Biological function of "pathogenesis-related" proteins: four PR proteins of tobacco have 1,3-beta-glucanase activity. EMBO J 6, 3209-3212.
    連結:
  153. 166. Kerr, J.E., and Christie, P.J. (2010). Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192, 4923-4934.
    連結:
  154. 167. Kim, S.I., Veena, and Gelvin, S.B. (2007). Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51, 779-791.
    連結:
  155. 168. Kinkema, M., Fan, W., and Dong, X. (2000). Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12, 2339-2350.
    連結:
  156. 169. Kitajima, S., and Sato, F. (1999). Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J Biochem 125, 1-8.
    連結:
  157. 170. Klee, H., Montoya, A., Horodyski, F., Lichtenstein, C., Garfinkel, D., Fuller, S., Flores, C., Peschon, J., Nester, E., and Gordon, M. (1984). Nucleotide sequence of the tms genes of the pTiA6NC octopine Ti plasmid: two gene products involved in plant tumorigenesis. Proc Natl Acad Sci U S A 81, 1728-1732.
    連結:
  158. 171. Koh, S., Andre, A., Edwards, H., Ehrhardt, D., and Somerville, S. (2005). Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J 44, 516-529.
    連結:
  159. 172. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G.P., and Schell, J. (1989). High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci U S A 86, 8467-8471.
    連結:
  160. 173. Koonin, E.V., and Rudd, K.E. (1994). A conserved domain in putative bacterial and bacteriophage transglycosylases. Trends Biochem Sci 19, 106-107.
    連結:
  161. 174. Krall, L., Wiedemann, U., Unsin, G., Weiss, S., Domke, N., and Baron, C. (2002). Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99, 11405-11410.
    連結:
  162. 175. Kumar, R.B., and Das, A. (2001). Functional analysis of the Agrobacterium tumefaciens T-DNA transport pore protein VirB8. J Bacteriol 183, 3636-3641.
    連結:
  163. 176. Kumar, R.B., and Das, A. (2002). Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol Microbiol 43, 1523-1532.
    連結:
  164. 177. Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98, 1871-1876.
    連結:
  165. 178. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. (2004). The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16, 3496-3507.
    連結:
  166. 179. Lacroix, B., Kozlovsky, S.V., and Citovsky, V. (2008). Recent patents on Agrobacterium-mediated gene and protein transfer, for research and biotechnology. Recent Pat DNA Gene Seq 2, 69-81.
    連結:
  167. 180. Lacroix, B., Tzfira, T., Vainstein, A., and Citovsky, V. (2006). A case of promiscuity: Agrobacterium's endless hunt for new partners. Trends Genet 22, 29-37.
    連結:
  168. 181. Lacroix, B., Vaidya, M., Tzfira, T., and Citovsky, V. (2005). The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24, 428-437.
    連結:
  169. 182. Lagrange, T., Hakimi, M.A., Pontier, D., Courtois, F., Alcaraz, J.P., Grunwald, D., Lam, E., and Lerbs-Mache, S. (2003). Transcription factor IIB (TFIIB)-related protein (pBrp), a plant-specific member of the TFIIB-related protein family. Mol Cell Biol 23, 3274-3286.
    連結:
  170. 183. Lai, E.M., Chesnokova, O., Banta, L.M., and Kado, C.I. (2000). Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. J Bacteriol 182, 3705-3716.
    連結:
  171. 184. Lai, E.M., Eisenbrandt, R., Kalkum, M., Lanka, E., and Kado, C.I. (2002). Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184, 327-330.
    連結:
  172. 186. Lai, E.M., Shih, H.W., Wen, S.R., Cheng, M.W., Hwang, H.H., and Chiu, S.H. (2006). Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone. Proteomics 6, 4130-4136.
    連結:
  173. 187. Lam, E., and Lam, Y.K. (1995). Binding site requirements and differential representation of TGF factors in nuclear ASF-1 activity. Nucleic Acids Res 23, 3778-3785.
    連結:
  174. 188. Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., and Ryals, J. (1995). Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant Microbe Interact 8, 863-870.
    連結:
  175. 189. Lazar, T., Gotte, M., and Gallwitz, D. (1997). Vesicular transport: how many Ypt/Rab-GTPases make a eukaryotic cell? Trends Biochem Sci 22, 468-472.
    連結:
  176. 190. Lee, C.W., Efetova, M., Engelmann, J.C., Kramell, R., Wasternack, C., Ludwig-Muller, J., Hedrich, R., and Deeken, R. (2009). Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21, 2948-2962.
    連結:
  177. 191. Lee, H.Y., Bowen, C.H., Popescu, G.V., Kang, H.G., Kato, N., Ma, S., Dinesh-Kumar, S., Snyder, M., and Popescu, S.C. (2011). Arabidopsis RTNLB1 and RTNLB2 reticulon-like proteins regulate intracellular trafficking and activity of the FLS2 immune receptor. Plant Cell. 23, 3374-3391.
    連結:
  178. 192. Lee, L.Y., Fang, M.J., Kuang, L.Y., and Gelvin, S.B. (2008). Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4, 24.
    連結:
  179. 193. Legrand, M., Kauffmann, S., Geoffroy, P., and Fritig, B. (1987). Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci U S A 84, 6750-6754.
    連結:
  180. 194. Leon-Reyes, A., Spoel, S.H., De Lange, E.S., Abe, H., Kobayashi, M., Tsuda, S., Millenaar, F.F., Welschen, R.A., Ritsema, T., and Pieterse, C.M. (2009). Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149, 1797-1809.
    連結:
  181. 195. Li, J., Krichevsky, A., Vaidya, M., Tzfira, T., and Citovsky, V. (2005a). Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci U S A 102, 5733-5738.
    連結:
  182. 196. Li, J., Vaidya, M., White, C., Vainstein, A., Citovsky, V., and Tzfira, T. (2005b). Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci U S A 102, 19231-19236.
    連結:
  183. 197. Lin, N.C., and Martin, G.B. (2005). An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Mol Plant Microbe Interact 18, 43-51.
    連結:
  184. 198. Lin, T.S., and Kado, C.I. (1993). The virD4 gene is required for virulence while virD3 and orf5 are not required for virulence of Agrobacterium tumefaciens. Mol Microbiol 9, 803-812.
    連結:
  185. 200. Lipka, V., and Panstruga, R. (2005). Dynamic cellular responses in plant-microbe interactions. Curr Opin Plant Biol 8, 625-631.
    連結:
  186. 201. Liu, B.P., Cafferty, W.B., Budel, S.O., and Strittmatter, S.M. (2006). Extracellular regulators of axonal growth in the adult central nervous system. Philos Trans R Soc Lond B Biol Sci 361, 1593-1610.
    連結:
  187. 202. Liu, J.J., Zamani, A., and Ekramoddoullah, A.K. (2010a). Expression profiling of a complex thaumatin-like protein family in western white pine. Planta 231, 637-651.
    連結:
  188. 204. Llosa, M., Gomis-Ruth, F.X., Coll, M., and de la Cruz Fd, F. (2002). Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 45, 1-8.
    連結:
  189. 205. Llosa, M., Zupan, J., Baron, C., and Zambryski, P. (2000). The N- and C-terminal portions of the Agrobacterium VirB1 protein independently enhance tumorigenesis. J Bacteriol 182, 3437-3445.
    連結:
  190. 206. Loake, G., and Grant, M. (2007). Salicylic acid in plant defence--the players and protagonists. Curr Opin Plant Biol 10, 466-472.
    連結:
  191. 207. Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J., and Solano, R. (2004). JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938-1950.
    連結:
  192. 208. Lorenzo, O., and Solano, R. (2005). Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8, 532-540.
    連結:
  193. 209. Loyter, A., Rosenbluh, J., Zakai, N., Li, J., Kozlovsky, S.V., Tzfira, T., and Citovsky, V. (2005). The plant VirE2 interacting protein 1. a molecular link between the Agrobacterium T-complex and the host cell chromatin? Plant Physiol 138, 1318-1321.
    連結:
  194. 210. Lu, J., den Dulk-Ras, A., Hooykaas, P.J., and Glover, J.N. (2009). Agrobacterium tumefaciens VirC2 enhances T-DNA transfer and virulence through its C-terminal ribbon-helix-helix DNA-binding fold. Proc Natl Acad Sci U S A 106, 9643-9648.
    連結:
  195. 211. Lutcke, A., Jansson, S., Parton, R.G., Chavrier, P., Valencia, A., Huber, L.A., Lehtonen, E., and Zerial, M. (1993). Rab17, a novel small GTPase, is specific for epithelial cells and is induced during cell polarization. J Cell Biol 121, 553-564.
    連結:
  196. 212. Mansouri, H., Petit, A., Oger, P., and Dessaux, Y. (2002). Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68, 2562-2566.
    連結:
  197. 213. McCullen, C.A., and Binns, A.N. (2006). Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22, 101-127.
    連結:
  198. 214. McMahon, H.T., and Gallop, J.L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590-596.
    連結:
  199. 215. Melchers, L.S., Maroney, M.J., den Dulk-Ras, A., Thompson, D.V., van Vuuren, H.A., Schilperoort, R.A., and Hooykaas, P.J. (1990). Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus. Plant Mol Biol 14, 249-259.
    連結:
  200. 217. Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., Zeng, W., Thines, B., Staswick, P., Browse, J., Howe, G.A., and He, S.Y. (2008). A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J 55, 979-988.
    連結:
  201. 219. Meszaros, B., Tompa, P., Simon, I., and Dosztanyi, Z. (2007). Molecular principles of the interactions of disordered proteins. J Mol Biol 372, 549-561.
    連結:
  202. 220. Michielse, C.B., Ram, A.F., Hooykaas, P.J., and van den Hondel, C.A. (2004). Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full-length VirD2, VirC2, or VirE2 leads to insertion of aberrant T-DNA structures. J Bacteriol 186, 2038-2045.
    連結:
  203. 223. Morel, P., Powell, B.S., Rogowsky, P.M., and Kado, C.I. (1989). Characterization of the virA virulence gene of the nopaline plasmid, pTiC58, of Agrobacterium tumefaciens. Mol Microbiol 3, 1237-1246.
    連結:
  204. 224. Moreira, E.F., Jaworski, C.J., and Rodriguez, I.R. (1999). Cloning of a novel member of the reticulon gene family (RTN3): gene structure and chromosomal localization to 11q13. Genomics 58, 73-81.
    連結:
  205. 225. Mossey, P., Hudacek, A., and Das, A. (2010). Agrobacterium tumefaciens Type IV secretion protein VirB3 is an inner membrane protein and requires VirB4, VirB7, and VirB8 for stabilization. J Bacteriol 192, 2830-2838.
    連結:
  206. 226. Mozo, T., and Hooykaas, P.J. (1992). Factors affecting the rate of T-DNA transfer from Agrobacterium tumefaciens to Nicotiana glauca plant cells. Plant Mol Biol 19, 1019-1030.
    連結:
  207. 227. Mukherjee, A.K., Carp, M.J., Zuchman, R., Ziv, T., Horwitz, B.A., and Gepstein, S. (2010). Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteomics 73, 709-720.
    連結:
  208. 228. Murashige, T. (1973). Nutrition of plant cells and organs in vitro. In Vitro 9, 81-85.
    連結:
  209. 229. Mushegian, A.R., Fullner, K.J., Koonin, E.V., and Nester, E.W. (1996). A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 93, 7321-7326.
    連結:
  210. 230. Mysore, K.S., Nam, J., and Gelvin, S.B. (2000). An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci U S A 97, 948-953.
    連結:
  211. 231. Nandi, A., Kachroo, P., Fukushige, H., Hildebrand, D.F., Klessig, D.F., and Shah, J. (2003). Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Mol Plant Microbe Interact 16, 588-599.
    連結:
  212. 232. Nair, G.R., Lai, X., Wise, A.A., Rhee, B.W., Jacobs, M., and Binns, A.N. (2011). The integrity of the periplasmic domain of the VirA sensor kinase is critical for optimal coordination of the virulence signal response in Agrobacterium tumefaciens. J Bacteriol 193, 1436-1448.
    連結:
  213. 233. Nam, J., Mysore, K.S., Zheng, C., Knue, M.K., Matthysse, A.G., and Gelvin, S.B. (1999). Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261, 429-438.
    連結:
  214. 234. Nam, J., Matthysse, A.G., and Gelvin, S.B. (1997). Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9, 317-333.
    連結:
  215. 235. Nandi, A., Kachroo, P., Fukushige, H., Hildebrand, D.F., Klessig, D.F., and Shah, J. (2003). Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Mol Plant Microbe Interact 16, 588-599.
    連結:
  216. 236. Newell, C.A. (2000). Plant transformation technology. Developments and applications. Mol Biotechnol 16, 53-65.
    連結:
  217. 237. Niderman, T., Genetet, I., Bruyere, T., Gees, R., Stintzi, A., Legrand, M., Fritig, B., and Mosinger, E. (1995). Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiol 108, 17-27.
    連結:
  218. 238. Novick, P., and Zerial, M. (1997). The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 9, 496-504.
    連結:
  219. 239. Nurnberger, T., Nennstiel, D., Jabs, T., Sacks, W.R., Hahlbrock, K., and Scheel, D. (1994). High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78, 449-460.
    連結:
  220. 240. Nziengui, H., Bouhidel, K., Pillon, D., Der, C., Marty, F., and Schoefs, B. (2007). Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization. FEBS Lett 581, 3356-3362.
    連結:
  221. 241. Nziengui, H., and Schoefs, B. (2009). Functions of reticulons in plants: What we can learn from animals and yeasts. Cell Mol Life Sci 66, 584-595.
    連結:
  222. 242. Oberhauser, A.F., Monck, J.R., Balch, W.E., and Fernandez, J.M. (1992). Exocytotic fusion is activated by Rab3a peptides. Nature 360, 270-273.
    連結:
  223. 243. Oertle, T., Klinger, M., Stuermer, C.A., and Schwab, M.E. (2003). A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J 17, 1238-1247.
    連結:
  224. 244. Oertle, T., and Schwab, M.E. (2003). Nogo and its paRTNers. Trends Cell Biol 13, 187-194.
    連結:
  225. 246. Olkkonen, V.M., and Stenmark, H. (1997). Role of Rab GTPases in membrane traffic. Int Rev Cytol 176, 1-85.
    連結:
  226. 247. Osmond, R.I., Hrmova, M., Fontaine, F., Imberty, A., and Fincher, G.B. (2001). Binding interactions between barley thaumatin-like proteins and (1,3)-beta-D-glucans. Kinetics, specificity, structural analysis and biological implications. Eur J Biochem 268, 4190-4199.
    連結:
  227. 248. Padfield, P.J., Balch, W.E., and Jamieson, J.D. (1992). A synthetic peptide of the rab3a effector domain stimulates amylase release from permeabilized pancreatic acini. Proc Natl Acad Sci U S A 89, 1656-1660.
    連結:
  228. 249. Park, E.C., Shim, S., and Han, J.K. (2005). Identification and expression of XRTN2 and XRTN3 during Xenopus development. Dev Dyn 233, 240-247.
    連結:
  229. 250. Paschold, A., Bonaventure, G., Kant, M.R., and Baldwin, I.T. (2008). Jasmonate perception regulates jasmonate biosynthesis and JA-Ile metabolism: the case of COI1 in Nicotiana attenuata. Plant Cell Physiol 49, 1165-1175.
    連結:
  230. 251. Penninckx, I.A., Eggermont, K., Terras, F.R., Thomma, B.P., De Samblanx, G.W., Buchala, A., Metraux, J.P., Manners, J.M., and Broekaert, W.F. (1996). Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8, 2309-2323.
    連結:
  231. 252. Penninckx, I.A., Thomma, B.P., Buchala, A., Metraux, J.P., and Broekaert, W.F. (1998). Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10, 2103-2113.
    連結:
  232. 253. Pereira-Leal, J.B., and Seabra, M.C. (2001). Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313, 889-901.
    連結:
  233. 254. Pfeffer, S., and Aivazian, D. (2004). Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 5, 886-896.
    連結:
  234. 255. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5, 308-316.
    連結:
  235. 256. Pieterse, C.M., and Van Loon, L.C. (2004). NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 7, 456-464.
    連結:
  236. 257. Pieterse, C.M., van Wees, S.C., Hoffland, E., van Pelt, J.A., and van Loon, L.C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8, 1225-1237.
    連結:
  237. 258. Pitzschke, A., Djamei, A., Teige, M., and Hirt, H. (2009). VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci U S A 106, 18414-18419.
    連結:
  238. 259. Pitzschke, A., and Hirt, H. (2010). New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. The EMBO Journal 29, 1021-1032.
    連結:
  239. 260. Pot, C., Simonen, M., Weinmann, O., Schnell, L., Christ, F., Stoeckle, S., Berger, P., Rulicke, T., Suter, U., and Schwab, M.E. (2002). Nogo-A expressed in Schwann cells impairs axonal regeneration after peripheral nerve injury. J Cell Biol 159, 29-35.
    連結:
  240. 263. Ramey, B.E., Koutsoudis, M., von Bodman, S.B., and Fuqua, C. (2004). Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7, 602-609.
    連結:
  241. 264. Rashkova, S., Spudich, G.M., and Christie, P.J. (1997). Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase. J Bacteriol 179, 583-591.
    連結:
  242. 265. Rashkova, S., Zhou, X.R., Chen, J., and Christie, P.J. (2000). Self-Assembly of the Agrobacterium tumefaciens VirB11 Traffic ATPase. J Bacteriol 182, 4137-4145.
    連結:
  243. 266. Regensburg-Tuink, A.J., and Hooykaas, P.J. (1993). Transgenic N. glauca plants expressing bacterial virulence gene virF are converted into hosts for nopaline strains of A. tumefaciens. Nature 363, 69-71.
    連結:
  244. 267. Reymond, P., Bodenhausen, N., Van Poecke, R.M., Krishnamurthy, V., Dicke, M., and Farmer, E.E. (2004). A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16, 3132-3147.
    連結:
  245. 268. Robatzek, S. (2007). Vesicle trafficking in plant immune responses. Cell Microbiol 9, 1-8.
    連結:
  246. 269. Roebroek, A.J., van de Velde, H.J., Van Bokhoven, A., Broers, J.L., Ramaekers, F.C., and Van de Ven, W.J. (1993). Cloning and expression of alternative transcripts of a novel neuroendocrine-specific gene and identification of its 135-kDa translational product. J Biol Chem 268, 13439-13447.
    連結:
  247. 270. Robatzek, S., Bittel, P., Chinchilla, D., Kochner, P., Felix, G., Shiu, S.H., and Boller, T. (2007). Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64, 539-547.
    連結:
  248. 271. Ross, A.F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology 14, 340-358.
    連結:
  249. 272. Rossi, L., Hohn, B., and Tinland, B. (1993). The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239, 345-353.
    連結:
  250. 273. Rossi, L., Hohn, B., and Tinland, B. (1996). Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 93, 126-130.
    連結:
  251. 274. Rothman, J.E. (1994). Mechanisms of intracellular protein transport. Nature 372, 55-63.
    連結:
  252. 275. Rothman, J.E., and Sollner, T.H. (1997). Throttles and dampers: controlling the engine of membrane fusion. Science 276, 1212-1213.
    連結:
  253. 276. Rutherford, S., and Moore, I. (2002). The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5, 518-528.
    連結:
  254. 277. Sagulenko, E., Sagulenko, V., Chen, J., and Christie, P.J. (2001a). Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J Bacteriol 183, 5813-5825.
    連結:
  255. 278. Sagulenko, V., Sagulenko, E., Jakubowski, S., Spudich, E., and Christie, P.J. (2001b). VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J Bacteriol 183, 3642-3651.
    連結:
  256. 279. Sakakibara, H., Kasahara, H., Ueda, N., Kojima, M., Takei, K., Hishiyama, S., Asami, T., Okada, K., Kamiya, Y., Yamaya, T., Yamaguchi, S. (2005). Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci U S A 102, 9972-9977.
    連結:
  257. 280. Salman, H., Abu-Arish, A., Oliel, S., Loyter, A., Klafter, J., Granek, R., and Elbaum, M. (2005). Nuclear localization signal peptides induce molecular delivery along microtubules. Biophys J 89, 2134-2145.
    連結:
  258. 282. Satiat-Jeunemaitre, B., Boevink, P., and Hawes, C. (1999). Membrane trafficking in higher plant cells: GFP and antibodies, partners for probing the secretory pathway. Biochimie 81, 597-605.
    連結:
  259. 283. Scherzinger, E., Lurz, R., Otto, S., and Dobrinski, B. (1992). In vitro cleavage of double- and single-stranded DNA by plasmid RSF1010-encoded mobilization proteins. Nucleic Acids Res 20, 41-48.
    連結:
  260. 285. Schrammeijer, B., den Dulk-Ras, A., Vergunst, A.C., Jurado Jacome, E., and Hooykaas, P.J. (2003). Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model evidence for transport of a novel effector protein VirE3. Nucleic Acids Res 31, 860-868.
    連結:
  261. 286. Schrammeijer, B., Hemelaar, J., and Hooykaas, P.J. (1998). The presence and characterization of a virF gene on Agrobacterium vitis Ti plasmids. Mol Plant Microbe Interact 11, 429-433.
    連結:
  262. 287. Schrammeijer, B., Risseeuw, E., Pansegrau, W., Regensburg-Tuink, T.J., Crosby, W.L., and Hooykaas, P.J. (2001). Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr Biol 11, 258-262.
    連結:
  263. 289. Senden, N.H., van de Velde, H.J., Broers, J.L., Timmer, E.D., Roebroek, A.J., van de Ven, W.J., and Ramaekers, F.C. (1994). Cluster-10 lung-cancer antibodies recognize NSPs, novel neuro-endocrine proteins associated with membranes of the endoplasmic reticulum. Int J Cancer Suppl 8, 84-88.
    連結:
  264. 290. Senyshyn, J., Balch, W.E., and Holz, R.W. (1992). Synthetic peptides of the effector-binding domain of rab enhance secretion from digitonin-permeabilized chromaffin cells. FEBS Lett 309, 41-46.
    連結:
  265. 291. Shibata, Y., Hu, J., Kozlov, M.M., and Rapoport, T.A. (2009). Mechanisms shaping the membranes of cellular organelles. Annu Rev Cell Dev Biol 25, 329-354.
    連結:
  266. 292. Simons, K., and Zerial, M. (1993). Rab proteins and the road maps for intracellular transport. Neuron 11, 789-799.
    連結:
  267. 293. Simone, M., McCullen, C.A., Stahl, L.E., and Binns, A.N. (2001). The carboxy-terminus of VirE2 from Agrobacterium tumefaciens is required for its transport to host cells by the virB-encoded type IV transport system. Mol Microbiol 41, 1283-1293.
    連結:
  268. 294. Sironen, R.K., Karjalainen, H.M., Torronen, K.J., Elo, M.A., Hyttinen, M.M., Helminen, H.J., and Lammi, M.J. (2004). Reticulon 4 in chondrocytic cells: barosensitivity and intracellular localization. Int J Biochem Cell Biol 36, 1521-1531.
    連結:
  269. 295. Sollner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., and Rothman, J.E. (1993a). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409-418.
    連結:
  270. 297. Sparkes, I., Tolley, N., Aller, I., Svozil, J., Osterrieder, A., Botchway, S., Mueller, C., Frigerio, L., and Hawes, C. (2010). Five Arabidopsis reticulon isoforms share endoplasmic reticulum location, topology, and membrane-shaping properties. Plant Cell 22, 1333-1343.
    連結:
  271. 298. Sparkes, I.A., Frigerio, L., Tolley, N., and Hawes, C. (2009). The plant endoplasmic reticulum: a cell-wide web. Biochem J 423, 145-155.
    連結:
  272. 299. Speth, E.B., Imboden, L., Hauck, P., and He, S.Y. (2009). Subcellular localization and functional analysis of the Arabidopsis GTPase RabE. Plant Physiol 149, 1824-1837.
    連結:
  273. 300. Spoel, S.H., Koornneef, A., Claessens, S.M., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J., Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X., and Pieterse, C.M. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15, 760-770.
    連結:
  274. 301. Spudich, G.M., Fernandez, D., Zhou, X.R., and Christie, P.J. (1996). Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci U S A 93, 7512-7517.
    連結:
  275. 303. Staswick, P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117-2127.
    連結:
  276. 304. Stein, E., Molitor, A., Kogel, K.H., and Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49, 1747-1751.
    連結:
  277. 305. Stenmark, H., and Olkkonen, V.M. (2001). The Rab GTPase family. Genome Biol 2, 3007.1-3007.7
    連結:
  278. 306. Stephens, K.M., Roush, C., and Nester, E. (1995). Agrobacterium tumefaciens VirB11 protein requires a consensus nucleotide-binding site for function in virulence. J Bacteriol 177, 27-36.
    連結:
  279. 307. Stoodley, P., Sauer, K., Davies, D.G., and Costerton, J.W. (2002). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187-209.
    連結:
  280. 308. Sundberg, C.D., Meek, L., Carroll, K., Das, A., and Ream, W. (1996). VirE1 protein mediates export of the single-stranded DNA-binding protein VirE2 from Agrobacterium tumefaciens into plant cells. J Bacteriol 178, 1207-1212.
    連結:
  281. 310. Swart, S., Lugtenberg, B.J., Smit, G., and Kijne, J.W. (1994). Rhicadhesin-mediated attachment and virulence of an Agrobacterium tumefaciens chvB mutant can be restored by growth in a highly osmotic medium. J Bacteriol 176, 3816-3819.
    連結:
  282. 312. Tagami, S., Eguchi, Y., Kinoshita, M., Takeda, M., and Tsujimoto, Y. (2000). A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 19, 5736-5746.
    連結:
  283. 313. Takai, Y., Sasaki, T., and Matozaki, T. (2001). Small GTP-binding proteins. Physiol Rev 81, 153-208.
    連結:
  284. 314. Tamogami, S., Rakwal, R., and Agrawal, G.K. (2008). Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem Biophys Res Commun 376, 723-727.
    連結:
  285. 315. Tenea, G.N., Spantzel, J., Lee, L.Y., Zhu, Y., Lin, K., Johnson, S.J., and Gelvin, S.B. (2009). Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants. Plant Cell 21, 3350-3367.
    連結:
  286. 316. Terasaki, M. (2000). Dynamics of the endoplasmic reticulum and golgi apparatus during early sea urchin development. Mol Biol Cell 11, 897-914.
    連結:
  287. 317. Terasaki, M., Slater, N.T., Fein, A., Schmidek, A., and Reese, T.S. (1994). Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc Natl Acad Sci U S A 91, 7510-7514.
    連結:
  288. 318. Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661-665.
    連結:
  289. 319. Thomma, B.P., Eggermont, K., Penninckx, I.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P., and Broekaert, W.F. (1998). Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95, 15107-15111.
    連結:
  290. 320. Thomma, B.P., Eggermont, K., Tierens, K.F., and Broekaert, W.F. (1999). Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol 121, 1093-1102.
    連結:
  291. 322. Tinland, B., Koukolikova-Nicola, Z., Hall, M.N., and Hohn, B. (1992). The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A 89, 7442-7446.
    連結:
  292. 324. Tolley, N., Sparkes, I., Craddock, C.P., Eastmond, P.J., Runions, J., Hawes, C., and Frigerio, L. (2010). Transmembrane domain length is responsible for the ability of a plant reticulon to shape endoplasmic reticulum tubules in vivo. Plant J 64, 411-418.
    連結:
  293. 325. Tolley, N., Sparkes, I.A., Hunter, P.R., Craddock, C.P., Nuttall, J., Roberts, L.M., Hawes, C., Pedrazzini, E., and Frigerio, L. (2008). Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport. Traffic 9, 94-102.
    連結:
  294. 326. Ton, J., Davison, S., Van Wees, S.C., Van Loon, L., and Pieterse, C.M. (2001). The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 125, 652-661.
    連結:
  295. 327. Tör, M., Lotze, M.T., and Holton, N. (2009). Receptor-mediated signalling in plants: molecular patterns and programmes. J Exp Bot 60, 3645-3654.
    連結:
  296. 328. Toro, N., Datta, A., Carmi, O.A., Young, C., Prusti, R.K., and Nester, E.W. (1989). The Agrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bacteriol 171, 6845-6849.
    連結:
  297. 329. Toro, N., Datta, A., Yanofsky, M., and Nester, E. (1988). Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proc Natl Acad Sci U S A 85, 8558-8562.
    連結:
  298. 330. Trudel, J., Grenier, J., Potvin, C., and Asselin, A. (1998). Several thaumatin-like proteins bind to beta-1,3-glucans. Plant Physiol 118, 1431-1438.
    連結:
  299. 331. Tzfira, T., and Citovsky, V. (2006). Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17, 147-154.
    連結:
  300. 332. Tzfira, T., Li, J., Lacroix, B., and Citovsky, V. (2004a). Agrobacterium T-DNA integration: molecules and models. Trends Genet 20, 375-383.
    連結:
  301. 333. Tzfira, T., Vaidya, M., and Citovsky, V. (2001). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20, 3596-3607.
    連結:
  302. 334. Tzfira, T., Vaidya, M., and Citovsky, V. (2004b). Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431, 87-92.
    連結:
  303. 335. van Attikum, H., Bundock, P., and Hooykaas, P.J. (2001). Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20, 6550-6558.
    連結:
  304. 336. van de Velde, H.J., Roebroek, A.J., Senden, N.H., Ramaekers, F.C., and Van de Ven, W.J. (1994). NSP-encoded reticulons, neuroendocrine proteins of a novel gene family associated with membranes of the endoplasmic reticulum. J Cell Sci 107, 2403-2416.
    連結:
  305. 337. Van der Ent, S., Van Wees, S.C., and Pieterse, C.M. (2009). Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70, 1581-1588.
    連結:
  306. 338. van Loon, L.C., Rep, M., and Pieterse, C.M. (2006). Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44, 135-162.
    連結:
  307. 339. van Wees, S.C., de Swart, E.A., van Pelt, J.A., van Loon, L.C., and Pieterse, C.M. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97, 8711-8716.
    連結:
  308. 340. Valencia, A., Chardin, P., Wittinghofer, A., and Sander, C. (1991). The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry 30, 4637-4648.
    連結:
  309. 341. Veena, Jiang, H., Doerge, R.W., and Gelvin, S.B. (2003). Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35, 219-236.
    連結:
  310. 342. Vergunst, A.C., Jansen, L.E., Fransz, P.F., de Jong, J.H., and Hooykaas, P.J. (2000a). Cre/lox-mediated recombination in Arabidopsis: evidence for transmission of a translocation and a deletion event. Chromosoma 109, 287-297.
    連結:
  311. 343. Vergunst, A.C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C.M., Regensburg-Tuink, T.J., and Hooykaas, P.J. (2000b). VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290, 979-982.
    連結:
  312. 344. Vergunst, A.C., van Lier, M.C., den Dulk-Ras, A., and Hooykaas, P.J. (2003). Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant Physiol 133, 978-988.
    連結:
  313. 345. Vernoud, V., Horton, A.C., Yang, Z., and Nielsen, E. (2003). Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131, 1191-1208.
    連結:
  314. 347. Vincent, M.J., Martin, A.S., and Compans, R.W. (1998). Function of the KKXX motif in endoplasmic reticulum retrieval of a transmembrane protein depends on the length and structure of the cytoplasmic domain. J Biol Chem 273, 950-956.
    連結:
  315. 348. Voeltz, G.K., Prinz, W.A., Shibata, Y., Rist, J.M., and Rapoport, T.A. (2006). A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124, 573-586.
    連結:
  316. 349. Voeltz, G.K., Rolls, M.M., and Rapoport, T.A. (2002). Structural organization of the endoplasmic reticulum. EMBO Rep 3, 944-950.
    連結:
  317. 350. Wagner, V.T., and Matthysse, A.G. (1992). Involvement of a vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells. J Bacteriol 174, 5999-6003.
    連結:
  318. 351. Wakefield, S., and Tear, G. (2006). The Drosophila reticulon, Rtnl-1, has multiple differentially expressed isoforms that are associated with a sub-compartment of the endoplasmic reticulum. Cell Mol Life Sci 63, 2027-2038.
    連結:
  319. 352. Waksman, G., and Fronzes, R. (2010). Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci 35, 691-698.
    連結:
  320. 354. Wang, K., Stachel, S.E., Timmerman, B., M, V.A.N.M., and Zambryski, P.C. (1987). Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235, 587-591.
    連結:
  321. 355. Ward, D.V., Draper, O., Zupan, J.R., and Zambryski, P.C. (2002). Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc Natl Acad Sci U S A 99, 11493-11500.
    連結:
  322. 357. Wennerberg, K., Rossman, K.L., and Der, C.J. (2005). The Ras superfamily at a glance. J Cell Sci 118, 843-846.
    連結:
  323. 358. White, R.F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99, 410-412.
    連結:
  324. 359. Wieczorek, D.F., and Hughes, S.R. (1991). Developmentally regulated cDNA expressed exclusively in neural tissue. Brain Res Mol Brain Res 10, 33-41.
    連結:
  325. 361. Woollard, A.A., and Moore, I. (2008). The functions of Rab GTPases in plant membrane traffic. Curr Opin Plant Biol 11, 610-619.
    連結:
  326. 362. Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. (2009). Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5, 16.
    連結:
  327. 363. Wu, Y.W., Tan, K.T., Waldmann, H., Goody, R.S., and Alexandrov, K. (2007). Interaction analysis of prenylated Rab GTPase with Rab escort protein and GDP dissociation inhibitor explains the need for both regulators. Proc Natl Acad Sci U S A 104, 12294-12299.
    連結:
  328. 364. Xiang, T., Zong, N., Zou, Y., Wu, Y., Zhang, J., Xing, W., Li, Y., Tang, X., Zhu, L., Chai, J., and Zhou, J. M. (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol 18, 74-80.
    連結:
  329. 365. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G. (1998). COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091-1094.
    連結:
  330. 366. Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W.L., Ma, H., Peng, W., Huang, D., and Xie, D. (2002). The SCF (COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919-1935.
    連結:
  331. 367. Yang, Y.S., and Strittmatter, S.M. (2007). The reticulons: a family of proteins with diverse functions. Genome Biol 8, 234.
    連結:
  332. 368. Yanofsky, M.F., Porter, S.G., Young, C., Albright, L.M., Gordon, M.P., and Nester, E.W. (1986). The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47, 471-477.
    連結:
  333. 369. Yoon, S.H., Lee, Y.M., Kim, J.E., Lee, S.H., Lee, J.H., Kim, J.Y., Jung, K.H., Shin, Y.C., Keasling, J.D., and Kim, S.W. (2006). Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng 94, 1025-1032.
    連結:
  334. 370. Young, C., and Nester, E.W. (1988). Association of the VirD2 protein with the 5' end of T strands in Agrobacterium tumefaciens. J Bacteriol 170, 3367-3374.
    連結:
  335. 371. Yuan, Q., Carle, A., Gao, C., Sivanesan, D., Aly, K.A., Hoppner, C., Krall, L., Domke, N., and Baron, C. (2005). Identification of the VirB4-VirB8-VirB5-VirB2 pilus assembly sequence of type IV secretion systems. J Biol Chem 280, 26349-26359.
    連結:
  336. 372. Zahrl, D., Wagner, M., Bischof, K., Bayer, M., Zavecz, B., Beranek, A., Ruckenstuhl, C., Zarfel, G.E., and Koraimann, G. (2005). Peptidoglycan degradation by specialized lytic transglycosylases associated with type III and type IV secretion systems. Microbiology 151, 3455-3467.
    連結:
  337. 373. Zaltsman, A., Krichevsky, A., Loyter, A., and Citovsky, V. (2010). Agrobacterium induces expression of a host F-box protein required for tumorigenicity. Cell Host Microbe 7, 197-209.
    連結:
  338. 374. Zerial, M., and McBride, H. (2001). Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2, 107-117.
    連結:
  339. 375. Zhang, B., and Singh, K.B. (1994). Ocs element promoter sequences are activated by auxin and salicylic acid in Arabidopsis. Proc Natl Acad Sci U S A 91, 2507-2511.
    連結:
  340. 376. Zhang, S., and Meyer, R. (1997). The relaxosome protein MobC promotes conjugal plasmid mobilization by extending DNA strand separation to the nick site at the origin of transfer. Mol Microbiol 25, 509-516.
    連結:
  341. 377. Zhao, Z., Sagulenko, E., Ding, Z., and Christie, P.J. (2001). Activities of virE1 and the VirE1 secretion chaperone in export of the multifunctional VirE2 effector via an Agrobacterium type IV secretion pathway. J Bacteriol 183, 3855-3865.
    連結:
  342. 378. Zheng, H., Camacho, L., Wee, E., Batoko, H., Legen, J., Leaver, C.J., Malho, R., Hussey, P.J., and Moore, I. (2005). A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis. Plant Cell 17, 2020-2036.
    連結:
  343. 379. Zheng, H., Kunst, L., Hawes, C., and Moore, I. (2004). A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. Plant J 37, 398-414.
    連結:
  344. 380. Zhou, J., Loh, Y.T., Bressan, R.A., and Martin, G.B. (1995). The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83, 925-935.
    連結:
  345. 381. Zhou, J., Tang, X., and Martin, G.B. (1997). The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J 16, 3207-3218.
    連結:
  346. 382. Zhu, Y., Nam, J., Carpita, N.C., Matthysse, A.G., and Gelvin, S.B. (2003a). Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol 133, 1000-1010.
    連結:
  347. 383. Zhu, Y., Nam, J., Humara, J.M., Mysore, K.S., Lee, L.Y., Cao, H., Valentine, L., Li, J., Kaiser, A.D., Kopecky, A.L., Hwang, H.H., Bhattacharjee, S., Rao, P. K., Tzfira, T., Rajagopal, J., Yi, H., Veena, Yadav, B. S., Crane, Y. M., Lin, K., Larcher, Y., Gelvin, M. J., Knue, M., Ramos, C., Zhao, X., Davis, S. J., Kim, S. I., Ranjith-Kumar, C.T., Choi, Y. J., Hallan, V.K., Chattopadhyay, S., Sui, X., Ziemienowicz, A., Matthysse, A.G., Citovsky, V., Hohn, B., and Gelvin, S.B. (2003b). Identification of Arabidopsis rat mutants. Plant Physiol 132, 494-505.
    連結:
  348. 384. Ziemienowicz, A., Merkle, T., Schoumacher, F., Hohn, B., and Rossi, L. (2001). Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13, 369-383.
    連結:
  349. 385. Ziemienowicz, A., Tinland, B., Bryant, J., Gloeckler, V., and Hohn, B. (2000). Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol Cell Biol 20, 6317-6322.
    連結:
  350. 386. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749-760.
    連結:
  351. 387. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767.
    連結:
  352. 388. Zong, N., Xiang, T., Zou, Y., Chai, J., and Zhou, J.M. (2008). Blocking and triggering of plant immunity by Pseudomonas syringae effector AvrPto. Plant Signal Behav 3, 583-585.
    連結:
  353. 389. Zupan, J., Hackworth, C.A., Aguilar, J., Ward, D., and Zambryski, P. (2007). VirB1* promotes T-pilus formation in the vir-type IV secretion system of Agrobacterium tumefaciens. Journal of Bacteriology 189, 6551-6563.
    連結:
  354. 390. Zupan, J.R., Citovsky, V., and Zambryski, P. (1996). Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci U S A 93, 2392-2397.
    連結:
  355. 391. Zupan, J.R., Ward, D., and Zambryski, P. (1998). Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr Opin Microbiol 1, 649-655.
    連結:
  356. 6. Matthysse, A.G., Kijne, J.W. (1998). Attachment of Rhizobiaceae to plant cells. The Rhizobiaceae: Molecular biology of model plant-associated bacteria, H.P. Spaink, A. Kondorosi, P.J.J. Hooykaas, eds (Dordrecht/Boston: Kluwer Academic Publishers), pp 235-249.
  357. 7. Sambrook, J. and Russell, D.W. (2001). In Molecular cloning : a laboratory manual, 3rd ed., N. Irwin, and K.A. Janssen, eds (New York, USA: Cold spring harbor laboratory press).
  358. 44. Brunaud, V., Balzergue, S., Dubreucq, B., Aubourg, S., Samson, F., Chauvin, S., Bechtold, N., Cruaud, C., DeRose, R., Pelletier, G., Lepiniec, L., Caboche, M., and Lecharny, A. (2002). T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep 3, 1152-1157.
  359. 48. Caplan, A.B., Van Montagu, M., and Schell, J. (1985). Genetic analysis of integration mediated by single T-DNA borders. J Bacteriol 161, 655-664.
  360. 54. Chardin, P. (1991). Small GTP-binding proteins of the ras family: a conserved functional mechanism? Cancer Cells 3, 117-126.
  361. 61. Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J. L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666-671.
  362. 84. Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J. (1994). A central role of salicylic acid in plant disease resistance. Science 266, 1247-1250.
  363. 100. Elferink, L.A., Anzai, K., and Scheller, R.H. (1992). Rab15, a novel low molecular weight GTP-binding protein specifically expressed in rat brain. J Biol Chem 267, 5768-5775.
  364. 112. Fullner, K.J. (1998). Role of Agrobacterium virB genes in transfer of T complexes and RSF1010. J Bacteriol 180, 430-434.
  365. 123. Glazebrook, J., Rogers, E.E., and Ausubel, F.M. (1996). Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143, 973-982.
  366. 125. Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5, 1003-1011.
  367. 128. Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.S., Cao, Y., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo, C., and Slater, S. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294, 2323-2328.
  368. 140. Herrera-Estrella, A., Chen, Z.M., Van Montagu, M., and Wang, K. (1988). VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA--protein complex at the 5' terminus of T-strand molecules. EMBO J 7, 4055-4062.
  369. 185. Lai, E.M., and Kado, C.I. (1998). Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180, 2711-2717.
  370. 199. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., Llorente, F., Molina, A., Parker, J., Somerville, S., and Schulze-Lefert, P. (2005). Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310, 1180-1183.
  371. 203. Liu, X., and Lam, E. (1994). Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J Biol Chem 269, 668-675.
  372. 216. Melchers, L.S., Regensburg-Tuink, T.J., Bourret, R.B., Sedee, N.J., Schilperoort, R.A., and Hooykaas, P.J. (1989). Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J 8, 1919-1925.
  373. 218. Messens, E., Lenaerts, A., Hedges, R.W., and Van Montagu, M. (1985). Agrocinopine A, a phosphorylated opine is secreted from crown gall cells. EMBO J 4, 571-577.
  374. 221. Montoya, A.L., Chilton, M.D., Gordon, M.P., Sciaky, D., and Nester, E.W. (1977). Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol 129, 101-107.
  375. 222. Montoya, A.L., Moore, L.W., Gordon, M.P., and Nester, E.W. (1978). Multiple genes coding for octopine-degrading enzymes in Agrobacterium. J Bacteriol 136, 909-915.
  376. 245. Olkkonen, V.M., Dupree, P., Killisch, I., Lutcke, A., Zerial, M., and Simons, K. (1993). Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily. J Cell Sci 106, 1249-1261.
  377. 261. Prinjha, R., Moore, S.E., Vinson, M., Blake, S., Morrow, R., Christie, G., Michalovich, D., Simmons, D.L., and Walsh, F.S. (2000). Inhibitor of neurite outgrowth in humans. Nature 403, 383-384.
  378. 262. Pylypenko, O., Rak, A., Reents, R., Niculae, A., Sidorovitch, V., Cioaca, M.D., Bessolitsyna, E., Thoma, N.H., Waldmann, H., Schlichting, I., Goody, R. S. and Alexandrov, K. (2003). Structure of Rab escort protein-1 in complex with Rab geranylgeranyl transferase. Mol Cell 11, 483-494.
  379. 281. Salomon, F., Deblaere, R., Leemans, J., Hernalsteens, J.P., Van Montagu, M., and Schell, J. (1984). Genetic identification of functions of TR-DNA transcripts in octopine crown galls. EMBO J 3, 141-146.
  380. 284. Schmidt-Eisenlohr, H., Domke, N., Angerer, C., Wanner, G., Zambryski, P.C., and Baron, C. (1999). Vir proteins stabilize VirB5 and mediate its association with the T pilus of Agrobacterium tumefaciens. J Bacteriol 181, 7485-7492.
  381. 288. Schultz, J., Doerks, T., Ponting, C.P., Copley, R.R., and Bork, P. (2000). More than 1,000 putative new human signalling proteins revealed by EST data mining. Nat Genet 25, 201-204.
  382. 296. Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E. (1993b). SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318-324.
  383. 302. Stachel, S.E., and Zambryski, P.C. (1989). Bacteria-yeast conjugation. Generic trans-kingdom sex? Nature 340, 190-191.
  384. 309. Sundberg, C.D., and Ream, W. (1999). The Agrobacterium tumefaciens chaperone-like protein, VirE1, interacts with VirE2 at domains required for single-stranded DNA binding and cooperative interaction. J Bacteriol 181, 6850-6855.
  385. 311. Szabados, L., Kovacs, I., Oberschall, A., Abraham, E., Kerekes, I., Zsigmond, L., Nagy, R., Alvarado, M., Krasovskaja, I., Gal, M., Berente, A., Redei, G. P., Haim, A. B., and Koncz, C. (2002). Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32, 233-242.
  386. 321. Tinland, B., and Hohn, B. (1995). Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. Genet Eng (N Y) 17, 209-229.
  387. 323. Tinland, B., Schoumacher, F., Gloeckler, V., Bravo-Angel, A.M., and Hohn, B. (1995). The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 14, 3585-3595.
  388. 346. Villarreal, M.L., and Munoz, J. (1991). Studies on the medicinal properties of Solanum chrysotrichum in tissue culture: I. Callus formation and plant induction from axillary buds. Arch Invest Med (Mex) 22, 127-133.
  389. 353. Wallden, K., Rivera-Calzada, A., and Waksman, G. (2010). Type IV secretion systems: versatility and diversity in function. Cell Microbiol 12, 1203-1212.
  390. 356. Wen, Q., Ma, L., and Wang, X.N. (2006). Culture condition optimization of engineered E. coli BL21/pET-11c/hIL-2-mGM-CSF. Nan Fang Yi Ke Da Xue Xue Bao 26, 418-420, 424.
  391. 360. Wood, D.W., Setubal, J.C., Kaul, R., Monks, D.E., Kitajima, J.P., Okura, V.K., Zhou, Y., Chen, L., Wood, G.E., Almeida, N.F., Jr., Woo, L., Chen, Y., Paulsen, I.T., Eisen, J.A, Karp, P.D., Bovee, D. Sr., Chapman, P., Clendenning, J., Deatherage, G., Gillet, W., Grant, C., Kutyavin, T., Levy, R., Li, M.J., McClelland, E., Palmieri, A., Raymond, C., Rouse, G., Saenphimmachak, C., Wu, Z., Romero, P., Gordon, D., Zhang, S., Yoo, H., Tao, Y., Biddle, P., Jung, M., Krespan, W., Perry, M., Gordon-Kamm, B., Liao, L., Kim, S., Hendrick, C., Zhao, Z.Y., Dolan, M., Chumley, F., Tingey, S.V., Tomb, J.F., Gordon, M.P., Olson, M.V., and Nester, E.W. (2001). The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294, 2317-2323.
Times Cited
  1. 劉茵慈(2014)。以蛋白質交互作用分析阿拉伯芥之Rab8A蛋白質及其參與之農桿菌感染過程。中興大學生命科學系所學位論文。2014。1-115。 
  2. 張欣農(2012)。Small GTPase AtRab8蛋白質家族及可與其結合之AtRTNLB蛋白質於農桿菌感染過程之功能分析。中興大學生命科學系所學位論文。2012。1-155。