Title

在大氣環境下以負極電沉積法成長鋰鋁層狀氫氧化合物(Li-Al-CO3 LDH)薄膜於1050鋁基材之研究

Translated Titles

Synthesizing Li-Al layered double hydroxide film on aluminum substrate by electrochemical deposition method in ambient atmosphere

DOI

10.6845/NCHU.2013.00288

Authors

廖唯呈

Key Words

1050鋁合金 ; 電沉積法 ; 鋰鋁介金屬化合物 ; 薄膜 ; 鋰鋁層狀雙氫氧化物 ; 傅立葉轉換紅外光譜儀 ; 1050 Al alloy ; electrochemical deposition ; AlLi intermetallic compound ; thin film ; Li-Al LDH ; Fourier transform infrared spectroscopy

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

汪俊延

Content Language

英文

Chinese Abstract

本研究在常溫壓下將1050鋁基材(陰極)與不鏽鋼片(陽極)浸入含有鋁離子與鋰離子的鹼性水溶液中(pH 12.3),並於兩極間施加直流電壓(2 V DC),目標在1050鋁箔基材上迅速成長鋰鋁層狀雙氫氧化物(Li-Al-CO3 LDH)薄膜。鋁金屬是兩性的,在鹼性溶液中易受腐蝕。在本研究之電沉積法中,因為鋁材受到陰極保護的關係,基材表面因水解所導致的腐蝕現象及氫氣泡將不會發生。另外,因為本製程中並未使用金屬鹽類的關係,薄膜成品不需要水洗。傅立葉轉換紅外光譜儀(FT-IR)分析不同製程時間的樣品,發現經30秒表面處理的試片,其O-H in gibbsite layers (~3470 cm-1)訊號劇增;經100秒表面處理後,層間區域之H2O-CO32- (~3040 cm-1)訊號出現。在製程75秒至100秒間,非晶型的CO32-訊號由插層型的CO32-訊號取代;相似地,在製程10秒至100秒間,非晶型的OH groups訊號由結晶型的OH groups訊號取代。經過200秒電沉積處理後,所有典型代表Li-Al-CO3 LDH的訊號峰皆已出現。以上資訊說明,電沉積成長Li-Al-CO3 LDH薄膜概略的成長機構是:先成長帶正電的前驅物,隨後為正電層的發展,最後是負電層的發展。另外,FT-IR分析結果顯示LDH前驅物有隨時間轉變為結晶型LDH的現象。實驗結果指出,水是影響LDH前驅物轉變為結晶型LDH的主要因素。

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [4] C.J. Serna, J.L. Rendon, J.E. Iglesias, Clays and Clay Minerals, 30 (1982) 180-184.
    連結:
  2. [20] G.W. Brindley, S. Kikkawa, Clays and Clay Minerals, 28 (1980) 87-91.
    連結:
  3. [21] E.H. Nickel, R.M. Clarke, American Mineralogist, 61 (1976) 366-372.
    連結:
  4. [27] S. Bhattacharjee, T.J. Dines, J.A. Anderson, The Journal of Physical Chemistry C, 112 (2008) 14124-14130.
    連結:
  5. [33] Y. Wang, H. Gao, Journal of Colloid and Interface Science, 301 (2006) 19-26.
    連結:
  6. [36] J.H. Lee, S.W. Rhee, D.-Y. Jung, Bull. Korean Chem. Soc, 26 (2005) 249.
    連結:
  7. [40] D. Yan, J. Lu, M. Wei, D.G. Evans, X. Duan, The Journal of Physical Chemistry B, 113 (2009) 1381-1388.
    連結:
  8. [42] D. Yan, J. Lu, M. Wei, S. Qin, L. Chen, S. Zhang, D.G. Evans, X. Duan, Advanced Functional Materials, 21 (2011) 2497-2505.
    連結:
  9. [45] X. Li, J. Liu, X. Ji, J. Jiang, R. Ding, Y. Hu, A. Hu, X. Huang, Sensors and Actuators B: Chemical, 147 (2010) 241-247.
    連結:
  10. [66] H. Chen, F. Zhang, S. Fu, X. Duan, Advanced Materials, 18 (2006) 3089-3093.
    連結:
  11. [67] A.W. Peabody, Peabody's control of pipeline corrosion, NACE international, 2001.
    連結:
  12. [68] D.A. Jones, Principles and Prevention of Corrosion, 2nd Ed, 1996, Prentice Hall,NJ, USA, p.439.
    連結:
  13. [76] Aramendı, amp, x, M. a, A. a, V. Borau, C. Jiménez, J.M. Marinas, J.R. Ruiz, F.J. Urbano, Journal of Solid State Chemistry, 168 (2002) 156-161.
    連結:
  14. [79] C.J. Serna, J.C. Lyons, J.L. White, S.L. Hem, Journal of Pharmaceutical Sciences, 72 (1983) 769-771.
    連結:
  15. [1] A.I. Khan, D. O'Hare, Journal of Materials Chemistry, 12 (2002) 3191-3198.
  16. [2] X. Guo, F. Zhang, D.G. Evans, X. Duan, Chemical Communications, 46 (2010) 5197-5210.
  17. [3] M.-A. Ulibarri, F.M. Labajos, V. Rives, R. Trujillano, W. Kagunya, W. Jones, Inorganic Chemistry, 33 (1994) 2592-2599.
  18. [5] I. Sissoko, E.T. Iyagba, R. Sahai, P. Biloen, Journal of Solid State Chemistry, 60 (1985) 283-288.
  19. [6] P.K. Dutta, M. Puri, The Journal of Physical Chemistry, 93 (1989) 376-381.
  20. [7] A.V. Besserguenev, A.M. Fogg, R.J. Francis, S.J. Price, D. O'Hare, V.P. Isupov, B.P. Tolochko, Chemistry of Materials, 9 (1997) 241-247.
  21. [8] S.L. Wang, R.J. Hseu, R.R. Chang, P.N. Chiang, J.H. Chen, Y.M. Tzou, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 277 (2006) 8-14.
  22. [9] J.P. Thiel, C.K. Chiang, K.R. Poeppelmeier, Chemistry of Materials, 5 (1993) 297-304.
  23. [10] M. Ogawa, S. Asai, Chemistry of Materials, 12 (2000) 3253-3255.
  24. [11] J. He, M. Wei, B. Li, Y. Kang, D. Evans, X. Duan, Preparation of Layered Double Hydroxides, in: X. Duan, D. Evans (Eds.) Layered Double Hydroxides, Springer Berlin Heidelberg, 2006, pp. 89-119.
  25. [12] S. Carlino, M.J. Hudson, S.W. Husain, J.A. Knowles, Solid State Ionics, 84 (1996) 117-129.
  26. [13] E.D. Dimotakis, T.J. Pinnavaia, Inorganic Chemistry, 29 (1990) 2393-2394.
  27. [14] F. Cavani, F. Trifirò, A. Vaccari, Catalysis Today, 11 (1991) 173-301.
  28. [15] F. Wong, R.G. Buchheit, Progress in Organic Coatings, 51 (2004) 91-102.
  29. [16] R.G. Buchheit, M.D. Bode, G.E. Stoner, Corrosion, 50 (1994) 205-214.
  30. [17] E.T. Iyagba, A Study of the Crystal Structure of Hydrotalcites and Their Catalytic Properties, University of Pittsburgh, 1986.
  31. [18] D.G. Evans, X. Duan, Chemical Communications, 0 (2006) 485-496.
  32. [19] G.W. Brindley, S. Kikkawa, American Mineralogist, 64 (1979) 836-843.
  33. [22] B. Sels, D.D. Vos, M. Buntinx, F. Pierard, A. Kirsch-De Mesmaeker, P. Jacobs, Nature, 400 (1999) 855-857.
  34. [23] S.R. Segal, K.B. Anderson, K.A. Carrado, C.L. Marshall, Applied Catalysis A: General, 231 (2002) 215-226.
  35. [24] C. Qi, J.C. Amphlett, B.A. Peppley, Applied Catalysis A: General, 302 (2006) 237-243.
  36. [25] Y. Liu, K. Murata, T. Hanaoka, M. Inaba, K. Sakanishi, Journal of Catalysis, 248 (2007) 277-287.
  37. [26] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, M. Crocker, Catal Lett, 115 (2007) 56-61.
  38. [28] F. Zhang, X. Xiang, F. Li, X. Duan, Catal Surv Asia, 12 (2008) 253-265.
  39. [29] J.L. Shumaker, C. Crofcheck, S.A. Tackett, E. Santillan-Jimenez, T. Morgan, Y. Ji, M. Crocker, T.J. Toops, Applied Catalysis B: Environmental, 82 (2008) 120-130.
  40. [30] J. Zhou, Y. Cheng, J. Yu, G. Liu, Journal of Materials Chemistry, 21 (2011) 19353-19361.
  41. [31] L.C. Hsu, S.L. Wang, Y.M. Tzou, C.F. Lin, J.H. Chen, Journal of Hazardous Materials, 142 (2007) 242-249.
  42. [32] T. Kameda, S. Saito, Y. Umetsu, Separation and Purification Technology, 47 (2005) 20-26.
  43. [34] K. Kuzawa, Y.-J. Jung, Y. Kiso, T. Yamada, M. Nagai, T.-G. Lee, Chemosphere, 62 (2006) 45-52.
  44. [35] P.C. Pavan, E.L. Crepaldi, G. de A. Gomes, J.B. Valim, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 154 (1999) 399-410.
  45. [37] K. Okamoto, T. Sasaki, T. Fujita, N. Iyi, Journal of Materials Chemistry, 16 (2006) 1608-1616.
  46. [38] Z. Liu, R. Ma, M. Osada, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Journal of the American Chemical Society, 128 (2006) 4872-4880.
  47. [39] D. Yan, J. Lu, M. Wei, J. Ma, D.G. Evans, X. Duan, Chemical Communications, 0 (2009) 6358-6360.
  48. [41] D. Yan, J. Lu, J. Ma, M. Wei, X. Wang, D.G. Evans, X. Duan, Langmuir, 26 (2010) 7007-7014.
  49. [43] D. Yan, J. Lu, J. Ma, M. Wei, D.G. Evans, X. Duan, Angewandte Chemie International Edition, 50 (2011) 720-723.
  50. [44] W. Shi, M. Wei, D.G. Evans, X. Duan, Journal of Materials Chemistry, 20 (2010) 3901-3909.
  51. [46] C. Forano, S. Vial, C. Mousty, Current Nanoscience, 2 (2006) 283-294.
  52. [47] M. Darder, M. López-Blanco, P. Aranda, F. Leroux, E. Ruiz-Hitzky, Chemistry of Materials, 17 (2005) 1969-1977.
  53. [48] B. Li, J. He, D. G. Evans, X. Duan, Applied Clay Science, 27 (2004) 199-207.
  54. [49] M. del Arco, S. Gutiérrez, C. Martín, V. Rives, J. Rocha, Journal of Solid State Chemistry, 177 (2004) 3954-3962.
  55. [50] J.-H. Choy, J.-S. Jung, J.-M. Oh, M. Park, J. Jeong, Y.-K. Kang, O.-J. Han, Biomaterials, 25 (2004) 3059-3064.
  56. [51] J.-H. Choy, S.-J. Choi, J.-M. Oh, T. Park, Applied Clay Science, 36 (2007) 122-132.
  57. [52] L. Anicăi, A.C. Manea, T. Visan, Molecular Crystals and Liquid Crystals, 418 (2004) 41-53.
  58. [53] C.M. Rangel, M.A. Travassos, Surface and Coatings Technology, 200 (2006) 5823-5828.
  59. [54] F. Zhang, L. Zhao, H. Chen, S. Xu, D.G. Evans, X. Duan, Angewandte Chemie International Edition, 47 (2008) 2466-2469.
  60. [55] F. Zhang, M. Sun, S. Xu, L. Zhao, B. Zhang, Chemical Engineering Journal, 141 (2008) 362-367.
  61. [56] X. Guo, S. Xu, L. Zhao, W. Lu, F. Zhang, D.G. Evans, X. Duan, Langmuir, 25 (2009) 9894-9897.
  62. [57] J.X. He, K. Kobayashi, M. Takahashi, G. Villemure, A. Yamagishi, Thin Solid Films, 397 (2001) 255-265.
  63. [58] J.-H. Syu, J.-Y. Uan, M.-C. Lin, Z.-Y. Lin, Corrosion Science, 68 (2013) 238-248.
  64. [59] C.-F. Lin, P.-H. Tsai, Z.-Y. Lin, J.-Y. Uan, C.-M. Lin, C.-C. Yang, B.-C. Shieh, Opt. Express, 20 (2012) A669-A677.
  65. [60] D. Shan, Y. Wang, M. Zhu, H. Xue, S. Cosnier, C. Wang, Biosensors and Bioelectronics, 24 (2009) 1171-1176.
  66. [61] D. Shan, C. Mousty, S. Cosnier, Analytical Chemistry, 76 (2003) 178-183.
  67. [62] R. Buchheit, C. Drewien, G. Stoner, in, Sandia National Labs., Albuquerque, NM (United States), 1993.
  68. [63] C. Drewien, M. Eatough, D. Tallant, C. Hills, R. Buchheit, Journal of materials research, 11 (1996) 1507-1513.
  69. [64] C. Drewien, R. Buchheit, in, Sandia National Labs., Albuquerque, NM (United States), 1993.
  70. [65] Z. Lü, F. Zhang, X. Lei, L. Yang, S. Xu, X. Duan, Chemical Engineering Science, 63 (2008) 4055-4062.
  71. [69] M.-C. Lin, F.-T. Chang, J.-Y. Uan, Journal of Materials Chemistry, 20 (2010) 6524-6530.
  72. [70] M.-C. Lin, J.-Y. Uan, T.-C. Tsai, International Journal of Hydrogen Energy, 37 (2012) 13731-13736.
  73. [71] A.W. Rudie, P.W. Hart, Tappi journal, 5 (2006) 17.
  74. [72] M. Dixit, P.V. Kamath, J. Gopalakrishnan, Journal of the Electrochemical Society, 146 (1999) 79-82.
  75. [73] C.J. Serna, J.L. White, S.L. Hem, Clays and Clay Minerals, 25 (1977) 384-391.
  76. [74] I.C. Chisem, W. Jones, Journal of Materials Chemistry, 4 (1994) 1737-1744.
  77. [75] P. Zhang, G. Qian, H. Shi, X. Ruan, J. Yang, R.L. Frost, Journal of Colloid and Interface Science, 365 (2012) 110-116.
  78. [77] J.-K. Lin, K.-L. Jeng, J.-Y. Uan, Corrosion Science, 53 (2011) 3832-3839.
  79. [78] W. Tongamp, Q. Zhang, F. Saito, J Mater Sci, 42 (2007) 9210-9215.
  80. [80] M. Hernandez-Moreno, M. Ulibarri, J.L. Rendon, C. Serna, Phys Chem Minerals, 12 (1985) 34-38.