Title

Design and analysis of the Equivalent circuit for Electrochemical Impedance of Dye sensitized Solar cells.

Translated Titles

Design and analysis of the Equivalent circuit for Electrochemical Impedance of Dye sensitized Solar cells.

DOI

10.6845/NCHU.2009.00355

Authors

巴黛芬

Key Words

DSSC ; TiO2 & ZnO ; EIS ; DSSC ; TiO2 & ZnO ; EIS

PublicationName

中興大學應用數學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

郭紅珠;李明威

Content Language

英文

Chinese Abstract

The initial studies of my thesis focus on the fabrication of dye-sensitized solar cells based on TiO2 and ZnO. DSSCs comprise an electrode consisting of a Nano crystalline titanium dioxide (TiO2) modified with a dye and applied to an F-doped SnO2 glass substrate; a counter electrode consisting of another F-doped SnO2 glass substrate coated with a thin Pt layer; and between the electrodes an electrolyte solution with a dissolved iodide ion/tri-iodide ion (I_/I3_) redox couple, we obtained the overall energy conversion efficiency of 5.45% under sun illumination for TiO2 DSSCs. Then I prepared ZnO Nanoparticles DSSC, we obtained the overall energy conversion efficiency of 1.35% under sun illumination and their efficiency on different dyes are compared. The second part of my present work focuses on an improved method to estimate the equivalent circuit parameters for the dye-sensitized solar cells (DSSCs). The aim of this work is to introduce the electrochemical impedance data explanation by equivalent electrical circuits. It is founded that, several different groups of values of equivalent circuit parameters can fit well to the same experiment-measured impedance data. Internal resistance depends upon the resistance element in the circuit. Internal resistance of the solar cell increases, when Fill Factor decreases.

English Abstract

The initial studies of my thesis focus on the fabrication of dye-sensitized solar cells based on TiO2 and ZnO. DSSCs comprise an electrode consisting of a Nano crystalline titanium dioxide (TiO2) modified with a dye and applied to an F-doped SnO2 glass substrate; a counter electrode consisting of another F-doped SnO2 glass substrate coated with a thin Pt layer; and between the electrodes an electrolyte solution with a dissolved iodide ion/tri-iodide ion (I_/I3_) redox couple, we obtained the overall energy conversion efficiency of 5.45% under sun illumination for TiO2 DSSCs. Then I prepared ZnO Nanoparticles DSSC, we obtained the overall energy conversion efficiency of 1.35% under sun illumination and their efficiency on different dyes are compared. The second part of my present work focuses on an improved method to estimate the equivalent circuit parameters for the dye-sensitized solar cells (DSSCs). The aim of this work is to introduce the electrochemical impedance data explanation by equivalent electrical circuits. It is founded that, several different groups of values of equivalent circuit parameters can fit well to the same experiment-measured impedance data. Internal resistance depends upon the resistance element in the circuit. Internal resistance of the solar cell increases, when Fill Factor decreases.

Topic Category 基礎與應用科學 > 數學
理學院 > 應用數學系所
Reference
  1. [4] M. Gratzel, J. Photo chem. and Photobio. A:Chem. 2004, 164, 3–14.
    連結:
  2. [5] A. Hagfeldt and M. Gratzel, Chem. Rev. 1995, 95, 49–68.
    連結:
  3. [6] K. Kalyanasundaram and M. Gratzel, Coord. Chem. Rev. 1998, 177, 347–414.
    連結:
  4. [8] Cahen et al., J.Phys.Chem. B 2000, 104, 2053–2059.
    連結:
  5. [9] A. Fujishima et al., Sol. Energy Mater. Sol. Cells 2004, 81, 197–203.
    連結:
  6. [15] J. Nelson, Mater. Today, 2002, 20
    連結:
  7. [17] Tan et al.Langmuir, 2004, 20, 2934
    連結:
  8. [18] B. Pradhan and A. J. Pal, solar Energy Mater. & Solar cell, 2004, 8, 469
    連結:
  9. [20] K Tennakone et al., J.Phys.D: Appl. Phys, 1998, 31, 1492
    連結:
  10. [21] P.Wang et al., J.Phys.Chem.B, 2003, 107, 13280
    連結:
  11. [23] K. kalyanasundaram and M. Gätzel, coord. Chem.. Rev, 1998, 77, 347
    連結:
  12. [24] Nanoporous TiO2 films in dye-sensitized solar cells., www.docin.com/p-17634202.html
    連結:
  13. [26] M. Gräzel, “Photo electrochemical cells”, Nature, 2001, 414, 338.
    連結:
  14. [27] U. Ozgur et al. "A comprehensive review of ZnO materials and devices" J. Appl. Phys. 2005, 89, 041301
    連結:
  15. [30] M. Nilsing, P. Persson, L. Ojamaee, Chem. Phys. Lett., 2005, 415, 375–380.
    連結:
  16. [38] Ma, T., Fang, X., Akiyama, M., Inoue K., Noma, H.,Abe, E., “Properties of several types of novel counter electrodes for dye-sensitized solar cells”, Journal of Electro analytical Chemistry and Photobiology A: Chemistry, 2004, 574, 77–83.
    連結:
  17. [39] Ref. Modeling photovoltaic system-Luis castaner
    連結:
  18. [40] Electrochemical impedance spectroscopy: 1 Basic principle
    連結:
  19. [1] L. Kazmerski, “Best Research Cell Efficiencies”, March 28, 2006.
  20. [2] B. O’Regan and M Gratzel, Nature 1991, 353, 737–740.
  21. [3] M. Gratzel, Nature 2001, 414, 338–344.
  22. [7] M. Gratzel, Current Opinion in Colloid and Interface Science 1999, 4, 314–321.
  23. [10] Vlachoppuios et al, J.Am.Chem.Soc. 1988, 110, 1216
  24. [11] M. Gätzel, J.Photochem. & Photobio:chem.. 2003, 164, 3
  25. [12] M. Gätzel, Nature 2001, 414, 338
  26. [13] M. Gätzel, Nature 2000, 403, 363
  27. [14] A. Hageldt, M. Gätzel, Chem.Rev. 1999, 95, 49
  28. [16] P.Wang et al., Nature Mater. 2002, 20
  29. [19] D. Gebeyehu, CJ. Brabec and N. S. Sariciftci, Thin Solid Films, 2002, 403, 271
  30. [22] M. Gätzel, Current Opinion in Colloid & Interface Science, 1999, 4, 1314
  31. [25] C. Barrett, T. B. Massalski, “Structure of Metals 3rd revised edition: Crystallographic Methods, Principles, and Data”, International Series on Materials Science and Technology, 35, (Pergamon Press, Oxford, New York, etc., 1987).
  32. [28] Landolt-Bornstein, New Series, Group III, Vol. 17 B, 22, 41B (Ed.: U. Rossler), Springer, Heidelberg, 1999.
  33. [29] E. Bae, W. Choi, J. Park, H.S. Shin, S.B. Kim, J.S. Lee, J. Phys. Chem. B, 2004, 108, 14093–14101
  34. [31] H. Park, E. Bae, J. J. Lee, J. Park, W. Choi, J. Phys. Chem. B, 2006, 110, 8740–8749.
  35. [32] A. Vittadini, A. Selloni, F.P. Rotzinger, M. Graetzel, J. Phys. Chem. B, 2000, 104, 1300–1306.
  36. [33] K. S. Finnie, J. R. Bartlett, J. L. Woolfrey, Langmuir, 1998, 14, 2744–2749.
  37. [34] M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Graetzel, J. Phys. Chem. B, 2003, 107, 8981–8987.
  38. [35] V. Thavasi, V. Renugopalakrishnan, R. Jose a, S. Ramakrishna Materials Science and Engineering R 2009, 63, 81–99.
  39. [36] K. Murakoshi, G. Kano, Y. Wada, S. Yanagida, H. Miyazaki, M. Matsumoto, S. Murasawa, J. Electro anal. Chem., 1995, 396, 27–34.
  40. [37] LeeHan Chiou, Wu Feng Institute of Technology, Institute of Opto-Electro-Mechanical and Materials, Master's Thesis, 2008.
  41. [41] Francisco Fabregat-Santiago, Juan Bisquert, Emilio Palomares, J. Phys. Chem. C, 2007, 111, 6550-6560.
  42. [42] Graztel, M Nature 1991, 414, 338
  43. [43] Liyuan Han, Naoki Koide, Yasuo Chiba, and Takehito Mitate, Appl. Phys. Lett., 2004, 84, 13, 29