Title

光輔助電化學濕式蝕刻應用於高亮度發光二極體元件製作

Translated Titles

Fabricated the High Brighness Light Emitting Diodes Through the Photoelectrochemical Wet Etching.

Authors

戴俊傑

Key Words

氮化鎵 ; 電化學 ; GaN ; PEC

PublicationName

中興大學材料科學與工程學系所學位論文

Volume or Term/Year and Month of Publication

2006年

Academic Degree Category

碩士

Advisor

林佳鋒

Content Language

繁體中文

Chinese Abstract

在本論文中,利用光輔助電化學濕式蝕刻作用於氮化銦鎵發光二極體結構,將平台側壁上蝕刻出三角形的孔洞、晶粒狀的粗化結構及奈米等級的三角錐,藉由快速側蝕所形成的三角形的孔洞可以減少光在發光層中的反射吸收更可以改善發光二極體的出光量。而隨著蝕刻時間的增加,側壁結構將由晶粒狀粗化結構變為奈米級的三角錐孔洞,有效提升發光元件之外部量子效率,並在側向光強度有5.9倍提升,此光輔助電化學蝕刻可有效提升發光二極體之發光效率。 在製作奈米級倒角錐體氮化銦鎵發光元件結構上,在經過4小時的電化學蝕刻處理後,在蝕刻平台上可觀察到大量奈米級倒角錐體結構,其幾何尺寸為高:184nm和基底寬度:245nm之倒角錐體結構,底部形成約10nm直徑之氮化銦鎵奈米盤結構,其形成機制可由發光層選擇性側向蝕刻和N-face蝕刻所組成,並根據Wulff理論,蝕刻穩定面是由最小表面積和表面能所組成,在氮化銦鎵量子井發光層之光激螢光光譜中,發現發光波長由476.9 nm藍移到434.8 nm,此42.1nm藍移量形成原因為:(1).氮化銦鎵量子井中壓電場效應因應力釋放而被減低,(2).倒角錐結構底部形成氮化銦鎵奈米盤結構而產生量子侷限效應,此角錐體保留P-GaN、MQW和N-GaN磊晶層結構,可以利用此種結構製造出奈米級發光元件。

English Abstract

The higher light extraction efficiency of InGaN-based light emitting diodes (LED) has fabricated and study in this thesis. The fabricated InGaN-based LED wafers are treated through a photoelectrochemical (PEC) wet etching process using the Hg lamp illumination and KOH solution. The selected wet etching process of InGaN/GaN MQW layer was observed from the mesa sidewall between the p-type and n-type GaN interface with 4.2 µm/hr lateral etching rate. After 30 min PEC wet etching process, the light output power of the PEC etching LED had 2.04, 5.94, and 1.73 times enhancement measured from the from-side, lateral, and back-side direction compared with the standard LED. The phenomenon of higher light enhancement was caused by forming the triangle-shaped air holes located at the active layer region, grain-like roughening surface and nano-scale triangle pits on the mesa sidewall. Small sized self-assembled inverted hexagonal pyramids of InGaN structures were formed during the 4hr PEC etching. We define the pyramid forming mechanism included lateral selective etching and N-face etching. The photoluminescence (PL) intensity of GaN:Mg peak has a great enhancement caused by nano-scale pyramids. By comparing with the intensity ratio of GaN:Mg to GaN bandedge peaks at 12K, the ratios are 0.33 for standard LED and 8.1 for PEC wet etching LED. Due to the nano-cavity confined effect and the total reflecting effect of this inverted hexagonal pyramid structure, a stronger PL emission peak GaN:Mg was found. The PL emission peaks of InGaN/GaN MQW structure are located at 476.9nm for standard and 434.8nm for etched sample, a strong blue shift phenomenon (42.1nm) was observed caused by reduced the piezoelectric field. The quantum confinement effect and compress strain relaxation are observed from temperature-dependent PL spectrum. This inverted hexagonal pyramids consisted with p-type GaN:Mg, nano-disk InGaN/GaN active layer, and n-type GaN:Si layer are suitable for the nano-scale optoelectric devices.

Topic Category 工學院 > 材料科學與工程學系所
工程學 > 工程學總論
Reference
  1. [1] S. Nakamura and G. Fasol, The Blue Laser Diode, (Springer, New York, 1997).
    連結:
  2. [3] E. Fred Schubert, Light-Emitting Diodes, (Cambridge, United Kingdom,2003).
    連結:
  3. [4] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett. 84, 855 (2004).
    連結:
  4. [5] L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, ”Deep ultraviolet wet chemical etching of gallium nitride”, Appl.. Phys. Lett. 72, 939 (1998).
    連結:
  5. [6] D. A. Stocker, E. F. Schubert, and J. M. Redwing, “Crystallographic wet chemical etching of GaN”, Appl. Phys. Lett. 73, 2654 (1998).
    連結:
  6. [7] M. S. Minsky, M. White, and E. L. Hu,” Room-temperature photoenhanced wet etching of GaN”, Appl. Phys. Lett. 68 ,1531 (1996).
    連結:
  7. [8] C. Youtsey and I. Adesida, and G. Bulman,” Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett. 71 ,2151 (1997).
    連結:
  8. [9] C. Youtsey, L. T. Romano, and I. Adesida” Gallium nitride whiskers formed by selective photoenhanced wet etching of dislocations”, Appl. Phys. Lett. 73 ,797 (1998).
    連結:
  9. [10] J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc,” Bias-assisted photoelectrochemical etching of p-GaN at 300 K”, Appl. Phys. Lett. 77 ,1227 (2000).
    連結:
  10. [11] Hock M. Ng, Nils G. Weimann, and Aref Chowdhury,” GaN nanotip pyramids formed by anisotropic etching”, J. Appl. Phys., 94, 650 (2003).
    連結:
  11. [12] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, and E. L. Hu,” Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride”, Appl. Phys. Lett. 84 ,3322 (2004).
    連結:
  12. [13] J. A. Bardwell, J. B. Webb, H. Tang, J. Fraser, and S. Moisa, ,” Ultraviolet photoenhanced wet etching of GaN in K2S2O8 solution”, J. Appl. Phys. 89 ,4142 (2001).
    連結:
  13. [14] Z. H. Hwang, J. M. Hwang, and H. L. Hwang, and W. H. Hung, “Electrodeless wet etching of GaN assisted with chopped ultraviolet light”, Appl. Phys. Lett. 84 ,3759 (2004).
    連結:
  14. [15] C. Youtsey, L. T. Romano, R. J. Molnar, I. Adesida, “Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching”, Appl. Phys. Lett. 74 ,3537 (1999).
    連結:
  15. [16] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc¸ and R. J. Molnar,” Dislocation density in GaN determined by photoelectrochemical and hot-wet etching”, Appl. Phys. Lett. 77 ,3532 (2000).
    連結:
  16. [17] J. L. Weyher, F. D. Tichelaar, H. W. Zandbergen, L. Macht and P. R. Hageman,” Selective photoetching and transmission electron microscopy studies of defects in heteroepitaxial GaN”, J. Appl. Phys., 90, 6105 (2001).
    連結:
  17. [19] C. Youtsey, G. Bulman, and I. Adesida, J. Eleltron. Mater. 27,282 (1998).
    連結:
  18. [20] C. Youtsey, I. Adesida, and G. Bulman, Electron. Lett. 33, 245 (1997).
    連結:
  19. [21] A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu,” Development of selective lateral photoelectrochemical etching of InGaN’GaN for lift-off applications”, Appl. Phys. Lett. 78, l945 (2001).
    連結:
  20. [23] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu,” Removal of thick (>100 nm) InGaN layers for optical devices using bandgap-selective photoelectrochemical etching”, Appl. Phys. Lett. 85 ,762 (2004).
    連結:
  21. [24] X. C. Wang, S. J. Xu, S. J. Chua, K. Li, X. H. Zhang, Z. H. Zhang, K. B. Chong, and X. Zhang, “Strong influence of SiO2 thin film on properties of GaN epilayers”, Appl. Phys. Lett. 74, 818 (1999).
    連結:
  22. [25] Yoshitaka Nakano, Takashi Jimbo,” Interface properties of thermally oxidized n-GaN metal–oxide–semiconductor capacitors”, Appl. Phys. Lett. 82, 218 (2003).
    連結:
  23. [26] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee and K. S. Chung, ” GaN metal–oxide–semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation”, Appl. Phys. Lett. 80, 446 (2002).
    連結:
  24. [27] Yoshitaka Nakano and Tetsu Kachi, and Takashi Jimbo,” Electrical properties of thermally oxidized p-GaN metal–oxide–semiconductor diodes”, Appl. Phys. Lett. 82, 2443 (2003).
    連結:
  25. [28] Ching-Ting Lee, Hong-Wei Chen and Hsin-Ying Lee,” Metal oxide semiconductor devices using Ga2O3 dielectrics on n-type GaN”, Appl. Phys. Lett. 82, 4304 (2003).
    連結:
  26. [29] Choelhwyi Bae, Cristiano Krug, Gerald Lucovsky, Arpan Chakraborty and Umesh Mishra,” Work-function difference between Al and n-GaN from Al-gated n-GaN/nitrided-thin-Ga2O3 /SiO2 metal oxide semiconductor structures”, Appl. Phys. Lett. 84, 5413 (2004).
    連結:
  27. [30] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett. 76, 511 (2000).
    連結:
  28. [31] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken,”Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions”, Appl. Phys. Lett. 76, 3923 (2000).
    連結:
  29. [32] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee,” Bias-assisted photoelectrochemical oxidation of n-GaN in H2O”, Appl. Phys. Lett. 81, 1029 (2002).
    連結:
  30. [33] D. J. Fu, T. W. Kang, Sh. U. Yuldashev, N. H. Kim, S. H. Park, J. S. Yun and K. S. Chung,” Effect of photoelectrochemical oxidation on properties of GaN epilayers grown by molecular beam epitaxy”, Appl. Phys. Lett. 78 ,1309 (2001).
    連結:
  31. [34]D. A. Stocker, E. F. Schubert, and J. M. Redwing, ”Crystallographic wet chemical etching of GaN”, Appl. Phys. Lett. 73,2654 (1998).
    連結:
  32. [35] D. A. Stocker, I. D.Goepfer, E. F. Schubert, K. S. Boutros, and J. M. Redwing,” Crystallographic wet chemical etching of p-type GaN”, Journal of Electrochemical Society,147(2)763-764(2000).
    連結:
  33. [36] D. A. Stocker, E. F. Schubert, K. S. Boutros, and J. M. Redwing,”Fabrication of smooth GaN-based laser facets”,MRS Internet J. Nitride Semicond. Res. 4S1, G7.5 (1999).
    連結:
  34. [37]S. S. Schad, M. Scherer, M. Seyboth, and V. Schwegler,”Extraction efficiency of GaN-baesd LEDs”,phys. Stat. sol. (a) 188, No.1,127-130 (2001).
    連結:
  35. [40] Nils G. Weimann, Lester F. Eastman, Dharanipal Doppalapudi, Hock M. Ng, and Theodore D. Moustakas, “Scattering of electrons at threading dislocations in GaN”, JOURNAL OF APPLIED PHYSICS, E 83,3656 (1998).
    連結:
  36. [42] B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux“From visible to white light emission by GaN quantum dots on Si(111)substrate.” Appl. Phys. Lett. 75, 962 (1999).
    連結:
  37. [43] Koichi Tachibana, Takao Someya, Satomi Ishida, and Yasuhiko Arakawa “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature.” Appl. Phys. Lett. 76, 3212 (2000).
    連結:
  38. “High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays.” NANO LETTERS Vol. 4, No. 6,1059-1062,(2004).
    連結:
  39. [49]L. Dai, B. Zhang, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 89, 4951 (2001).
    連結:
  40. [50]A. P. Vajpeyi, S. J. Chua, S. Tripayhy, E. A. Fitzgerald, W. Liu, P. Chen, and L. S. Wang, “High Optical Quality Nanoporous GaN Prepared by Photoelectrochemical Etching” Electrochemical and Solid-State Letters,8,G85-G88,(2005).
    連結:
  41. [53] Y. Gao, I. Ben-Yaacov, U. K. Mishra, and E. L. Hu,” Optimization of AlGaN/GaN current aperture vertical electron transistor (CAVET) fabricated by photoelectrochemical wet etching” J. Appl. Phys. 96, 6925 (2004).
    連結:
  42. [54]E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu, “Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching”, Appl. Phys. Lett. 85, 5179 (2004).
    連結:
  43. [55] M. S. Minsky etal “Room-temperature photoenhanced wet etching of GaN”,Appl. Phys. Lett. 68. pp. 1531-1533(1996).
    連結:
  44. [56] H. Lu et al “Photoassisted anodic etching of GaN.”,J. Electrochem. Soc. 144. L8-L11(1997).
    連結:
  45. [57]Lung-Han Peng et al,“Hydration Effects in the Photoassisted Wet Chemical Etching of Gallium Nitride.”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 4, NO. 3, MAY/JUNE (1998).
    連結:
  46. [2] A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., Appl. Phys. Lett. 70, 2790 (1997).
  47. [18] J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul and S. P. Kilcoyne,” Wet chemical etching of AlN”, Appl. Phys. Lett. 67 ,1119 (1995).
  48. [22] P. Visconti, M. A. Reshchikov, K. M. Jones, D. F. Wang, R. Cingolani, H. Morkoc, R. J. Molnar, and D. J. Smith, J. Vac. Sci. Technol. B 19, 1328 (2001).
  49. [38]U. Strauss, H. J. Lugauer, A. Weimar, J. Baur, G.. Bruderl, D. Eisert, F. Kuhn, U. Zehnder, and V. Harle, ”Progress of InGaN Light Emitting Diodes on SiC”, phys. Stat. sol. (c) 0, No.1, 276-279 (2002).
  50. [39]范姜世明,”氮化銦鎵透明導電氧化膜之光電元件應用與研究,國立台灣大學電子工程研究所碩士論文(2003).
  51. [41]施敏,”半導體元件物理與製作技術”國立交通大學出版社。
  52. [44] Hwa-Mok Kim, Yong-Hoon Cho, Hosang Lee, Suk Il Kim, Sung Ryong Ryu, Deuk Young Kim, Tae Won Kang, and Kwan Soo Chung
  53. [45] D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys.” p. 110, Chapman & Hall, New York (1991).
  54. [46] M. A. Reshchikov, G. C. Yi, and B. W. Wessels,” Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN
  55. at different temperatures and excitation densities” Phys. Rev. B, 59, 13176 (1999).
  56. [47] C. Leey, J. E. Kimy, H. Y. Parky, S. T. Kimz, and H Limx, J. Phys.: Condens. Matter, 10, 11103 _1998_.
  57. [48] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 1, 36, 382 (1997).
  58. [51] 陳政寰等,”奈米光柵之原理與應用”,機械工業雜誌 245 期。
  59. [52] 黃戎巖等,”次波長繞射光柵簡介”,機械工業雜誌 245 期。