Title

以強制對流降低車內溫度之模擬研究

Translated Titles

The Simulative Study of Temperature Variation in Vehicles with Forced Convection

DOI

10.6845/NCHU.2012.00640

Authors

林伯軒

Key Words

強制對流 ; 紊流 ; 溫度 ; Forced Convection ; Turbulent Flow ; Temperature

PublicationName

中興大學化學工程學系所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

張厚謙

Content Language

繁體中文

Chinese Abstract

隨著科技進步,汽車已經成為日常生活中的一部分,加上現代人追求的生活品質越來越高,如何得到更舒適的環境是一大議題。早期車內流場的研究皆以實車實驗去模擬,不但花費時間且又耗費成本,如今電腦系統的發達,越來越多研究人員使用數值模擬的方式來分析汽車室內流場的變化。受到太陽日照的影響,放置於戶外的車體內部溫度升高,使得人員進入車體會感到悶熱且不舒適,本文研究人員在進入車內前,使用物理方法將車內溫度有效下降,接著再進入車內,如此一來,既能增加後續人員進入車內的舒適,又能使空調系統發揮更大的作用。太陽日照方面以熱通量代替,並且令擋風玻璃為一熱源,考慮κ-ε紊流模式,將上述條件匯入商業套裝軟體FLUENT以求得車內溫度場的變化。 本文討論不同環境條件下,能使車內溫度下降最快的方法,車門開啟與關閉的排列組合一共有7種,模擬這7種情形之後得到的結果顯示,在後座兩車門打開及全部車門打開的條件下,車內溫度能下降較快;而時間方面,0~5秒內的流場變化較為劇烈,5~10秒的溫度場不太改變,所以推論開始動作5秒後,車內流場以逐漸達穩定;速度方面,開關門為45度產生的風速大於30度產生的風速,風速較快也導致車內溫度下降較明顯,結合以上的結果,得到一最佳化條件,此結果可作為日後人員進入受到太陽日照影響的車體之前參考之依據。

English Abstract

With the technology improving, car has been an important part of human activity, people have high quality of life, it becomes a great issue to get better environment. Previous researches related to car interior field flow were based on experimental method, not only waste time but also take a lot of cost, nowadays ,with the computer system great developing, more researchers analyze the change of car interior field flow by numerical method. Since the exposure to the sunlight, car parked outside get higher temperature, making people get in the car feel muggy and uncomfortable. Here we use some physical methods to reduce the interior temperature before getting in the car so that people will feel more comfortable and the air-conditioner play the greater role within vehicle. The solar radiation is replaced of the constant heat flux and the windshield is regard as a heat source, using κ-ε tabulate modal, all of the above conditions were imported to FLUENT to calculate the change of temperature in the car interior field. We discuss the best way to lower the interior temperature under different door to open and close, there are seven combinations between different doors to open and close. After the simulation, result shows that under the two conditions that the two backdoors and all of the doors are opened cooling the fastest. From the prospective of time, the field flow changes strictly during the 0sec to 5sec, during the 5sec to 10sec, the temperature changes rarely, so the interior field flow reaches steady state. In addition to velocity field, the wind speed caused by door switching 45 degrees is faster than door switching 30 degrees, the faster wind speed, the more obvious temperature dropping. In conclusion, we can conclude the best conditions, which can be a reference before people getting in the car exposure to the sunlight.

Topic Category 工學院 > 化學工程學系所
工程學 > 化學工業
Reference
  1. [1] J.D. Spengler, K. Sexton, Indoor air pollution: a public health perspective, Science, 221 (1983) 9-17.
    連結:
  2. [2] A. Thorn, The sick building syndrome: A diagnostic dilemma, Soc Sci Med, Vol. 47 (1998) 1307-1312.
    連結:
  3. [3] W.J. Fisk, Review of health and productivity gains from better IEQ, (2000).
    連結:
  4. [5] Ole R. N., Christian L., Birthe L. T., Henrik S., and H. O. Jorgen, Ambient Air Levels and Exposure of Children to Benzene, Toluene, and Xylenes in Denmark, Environment Research, Vol. 75 (1997) 149-159.
    連結:
  5. [9] T. Toru, Yoshiichi, O., and Shin-Ichi, T., Numerical Comfort Simulation for Thermal Environment (part2) an Application of Simulation for the Evaluation of Solar Reduction Glass in a Vehicle Model, SAE Paper, 2002-01-0235 (2002).
    連結:
  6. [10] E.S. Johnson, Langard, S., and Lin, Y. S., A critique of benzene exposure in the general population., Science of the Total Environment 374 (2-3), (2007) 183-198.
    連結:
  7. [11] C.D. Collins, Bell, J. N. B., and Crews, C., Benzene accumulation in horticultural crops., Chemosphere 40 (1):109-114., (2000).
    連結:
  8. , Leukaemia in benzene workers, The Lancet, Volume 310 (1977) 76-78.
    連結:
  9. [15] Mats Sandberg, Mats Sjoberg, The use of moments for assessingairquality in ventilatedrooms, Building and Environment, 18 (1983) 181-197.
    連結:
  10. [16] 陳念祖, 建築開口部裝設導風板對自然通風之效益, (2001).
    連結:
  11. [17] T. P. Chiang, Tony W. H. Sheu, S. F. Tsai, Topological flow structures in backward-facing step channels, Computes and Fluids, Vol. 26 (1997) 321-337.
    連結:
  12. [18] Yuguo , Li, Buoyancy-driven natural ventilation in a thermally stratifed one-zone building, Building and Environment, (1999).
    連結:
  13. [19] I. Atmaca, Effects of radiant temperature on thermal comfort, Building and Environment, (2006).
    連結:
  14. [21] G.I. Taylor, Stability of a Viscous Liquid contained between Two Rotating
    連結:
  15. Cylinders, Phil. Trans. Royal Society A223, (1923) 289-343.
    連結:
  16. [22] N. Rott, Note on the history of the Reynolds number, Annual Review of Fluid Mechanics, 22 (1990) 1-11.
    連結:
  17. [23] K.Y. Chien, Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds Number Turbulence Model, AIAA Journal, 20,No. 1 (1982) 33-38.
    連結:
  18. [25] B.E. Launder, Sharma, B. I., Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc, Letters in Heat and Mass Transfer, Vol. 1, No. 2 (1974) 131-138.
    連結:
  19. [26] Y. Nagano, Tagawa, M, An Improved k-epsilon Model for Boundary Layer Flows, Journal of Fluids Engineering, 112 (1990) 33-39.
    連結:
  20. [27] W. Rodi, Mansour, N. N., Low Reynolds Number k-epsilon Modeling with the Aid of Direct Simulation Data, Journal of Fluid Mechanics, 250 (1993) 502-529.
    連結:
  21. [28] Henkes, R.A.W.M., and Hoogendoorn, C.J., Comparison Exercise for Computations of Turbulent Natural Convection in Enclosures, Numerical Heat Transfer, Vol. 28B (1995) 59-78.
    連結:
  22. [29] Y. Li, and Baldacchino, L., Implementation of Some Higher-Order Convection Schemes on Non-Uniform Grids, International Journal for Numerical Methods in Fluids, Vol. 21 (1995) 1201-1220.
    連結:
  23. [33] A. Stamou, I. Katsiris, Verification of a CFD model for indoor airflow and heat transfer, Building and Environment, 41 (2006) 1171-1181.
    連結:
  24. [34] P. O. Fanger, A. K. Melikov, H. Hanzawa, and J. Ring, and J. Ring, Air turbulence and Sensation of Draught, Energy and Buildings, Vol. 12 (1988) pp. 21-39.
    連結:
  25. [37] G. Gan, Evaluation of Room Air Distribution Systems Using Computational Fluid Dynamics, Energy and Buildings, Vol. 23 (1995) 83-93.
    連結:
  26. [38] T. Komoriya, Prediction Method of Passenger's Thermal Sensation by Numerical Simulation of Air Flow in an Automobile Passenger Compartment, JSAE Review, Vol. 16 (1995) 315.
    連結:
  27. [39] C. Joachim, Numerical simulation of the flow in a passenger compartment and evaluation of the thermal comfort of the occupants, SAE Paper, 970529 (1997).
    連結:
  28. [40] A. Aroussi,S. Aghil, Characterization of the Flow Field in a Passenger Car Model, Optical Diagnostics in Engineering, Vol. 4, No. 1 (2000) 1-15.
    連結:
  29. [41] F. Akihiro, Jun-ichi, K., Hiroshi, N. and Yoshiichi, O., Numerical simulation method to predict the thermal environment inside a car cabin, JSAE Paper, 20014006 (2000).
    連結:
  30. [42] H. Chen, Chung, W. T. and Liang, S. M., Numerical Simulation of Air-Conditioned Flow Filed in an Automobile Cabin, The 12th National Computational Fluid Dynamics Conference, CFD12-2209, (2005).
    連結:
  31. [43] P. Yang, Q. Feng, G. Hong, G.W. Kattawar, W.J. Wiscombe, M.I. Mishchenko, O. Dubovik, I. Laszlo, and I.N. Sokolik, Modeling of the Scattering and Radiative Properties of Nonspherical Dust-like Aerosols, J. Aerosol Sci., Vol. 38 (2007) 995-1014.
    連結:
  32. [44] A. Kolesnikov, Use of Computational Fluid Dynamics to Predict Airflow and Contamination Concentration Profiles Within Laboratory Floor Plan Environment, Applied Biosafety, Vol. 14 (4) (2006) 197-214.
    連結:
  33. [46] Patel, V. C., Rodi, W., Scheuerer, G., Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review, AIAA Journal, Vol. 23, No. 9 (1985) 1308-1319.
    連結:
  34. [49] Pan, D., Cheng, J.C., Upwind finite-volume Navier-Stokes computations on unstructured triangular meshes, AIAA Journal, Vol.31 (1993) 1618.
    連結:
  35. [50] Robert Eymard,Thierry Gallou‥et and Rapha`ele Herbin, Finite Volume Methods, Handbook of Numerical Analysis, Vol. 7 (2006) 713-1020.
    連結:
  36. [52] 林忠豪, 高爐下部鐵水流動中鈦化合物濃度分佈之數值模擬, (2007).
    連結:
  37. [53] S.V.Patankar, D.B.Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, International Journal of Heat and Mass Transfer, 15 (1972) 1787-1806.
    連結:
  38. [56] 周鼎金, 邱繼哲, 建築物雙層通風屋頂構造隔熱性能之研究, 中華民國建築學會「建築學報」第 59 期, (2007) 79-92.
    連結:
  39. [57] Hanqing Wang,Liping Xiang, Numerical Simulation of Air conditioning Vehicle Using Computational Fluid Dynamics, IEEE, (2009).
    連結:
  40. [58] J.-Y.J. C.-H. CHIEN, Y.-H. CHEN and S.-C. WU, 3-D NUMERICAL AND EXPERIMENTAL ANALYSIS FOR AIRFLOW WITHIN A PASSENGER COMPARTMENT, International Journal of Automotive Technology, Vol. 9, No. 4 (2008) 437-445.
    連結:
  41. [4] P.V. Nielsen, The Importance of Building Materials and Building Construction to SBS, (1988).
  42. [6] 光與熱的關係, http://www.weyu.com.tw/images/insulation/02.jpg.
  43. [7] 徐天佑,曾鴻陽, 台灣地區有關太陽能日照量之環境時空因素研究探討, 環境教育學刊 第六期, (2007).
  44. [8] National SAFE KIDS Campaign, Never Leave Your Child Alone, http://www.safekids.org, 2005.
  45. [12] PeterF. Infante, JosephK. Wagoner, RobertA. Rinsky, RonaldJ. Young
  46. [13] 江哲銘, 建築通風性能式規範之研究, 內政部建築研究所專題研究計畫, (1999).
  47. [14] 廖崇文, 不同空調通風路徑對室內空氣與溫熱環境影響之研究, (2003).
  48. [20] 林憲德等人, 綠建築解說與評估手冊, 內政部建築研究所專題研究計畫, (2007).
  49. [24] J.O. Hinze, Turbulence, McGraw-Hill Publishing Co., New York, (1975).
  50. [30] P.V. Nielson, The Selection of Turbulence Models for Prediction of Room Airflow, ASHRAE Trans., Vol. 104, Part. 1B (1998) 1119-1127.
  51. [31] Munson, B. R., Young, D. F., and Okiishi, T. H., Fundamentals of fluid mechanics, John Wiley & Sons, New York, U.S.A., (1994).
  52. [32] Y.A. Cengel, and Cimbala, J. M., Fluid mechanics Fundamentals and Applications, McGraw-Hill, New York, U.S.A., (2006).
  53. [35] P.O. Fanger, The New Comfort Equation for Indoor Air Quality, ASHRAE J., Vol. 31 (1989) pp. 33-38.
  54. [36] Wan, J.W. and Kooi, J., Influence of The Position of Supply and Exhaust Openings on Comfort in a Passenger Vehicle, Int. J. of vehicle Design, Vol. 12 (1991) 588-597.
  55. [45] Launder, B. E. and Spalding, D. B., Lectures in Mathematical
  56. Models of Turbulence, Academic Press, London, England, (1972).
  57. [47] W. Shyy, Computational modeling for fluid flow and intcrfacial transport, Amsterdam: Elsevier, (1994) 143-145.
  58. [48] Fluent 6.1 User's Guide, Fluent Inc., (2004).
  59. [51] Gan, G. and Awbi, H.B., Numerical Prediction of the Age of Air in Ventilated Rooms, ROOMVENT’94, Vol. 2 (1994) 16-27.
  60. [54] 王俊雄, 房車內乘客舒適度之數值模擬, (2004).
  61. [55] 鄧治東, 區劃空間火場內撒水液滴行為之研究, (2002).
Times Cited
  1. 劉智翔(2015)。數值模擬仿真區和孔徑比對銅柱均勻性的影響。中興大學化學工程學系所學位論文。2015。1-77。