Title

平面雙機械臂挾持彈性體之控制

Translated Titles

Control of Planar Dual-Arm Robot System with Flexible Object

DOI

10.6845/NCHU.2009.00626

Authors

林佑勳

Key Words

肯氏定理 ; 雙機械手臂 ; 彈性體 ; 拉格朗日乘數 ; 計算力矩法 ; dual-arm robot ; flexible object ; Lagrange multiplier ; computed torque method

PublicationName

中興大學機械工程學系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

林仕亭

Content Language

繁體中文

Chinese Abstract

雙機械臂挾持物件的系統,可以視為閉鍊(closed chain)的多體機械系統(multibody mechanical system);應用Lagrange Multiplier定理建立此閉鍊系統的動態方程式,並將系統的拘束方程式代入動態方程式中,得到拘束動態方程式。透過求解系統的拘束動態方程式,可求得Lagrange multiplier;經由轉換計算可以得到物件的受力,進行力量控制。 本文探討挾持彈性體的雙機械臂系統。藉由Lagrange Multiplier定理推導出的拘束動態方程式,經過適當的修正後,來對雙機械臂進行不同工作型態下的位置及力量控制。最後由電腦模擬控制的結果,可以知道利用此理論架構進行挾持彈性體的雙機械臂的位置與力量控制的結果。

English Abstract

Dual-arm robots holding the object can be seen as a closed chain multibody mechanical system. One can introduce the constrained equations into equations of motion to formulate the equation of motion of the closed chain multibody mechanical system by applying Lagrange Multiplier theorem, and then obtain the constrained equations of motion. Solving the constrained equations of motion, one can get the Lagrange multiplier, which can be used to calculate the force acting on the object held by dual-arm robots, and then make force control. In this thesis, we treat about dual-arm robot system with flexible object. We can use the constrained equations of motion by applying Lagrange Multiplier theorem to develop the dual-arm robot system with flexible object. From the results of simulations, we can use this theory for simultaneous position/force control in many cases.

Topic Category 工學院 > 機械工程學系所
工程學 > 機械工程
Reference
  1. [1] Farid. M. L. Amirouche, “COMPUTATIONAL METHODS IN MULTIBODY DYNAMICS,” Prentice-Hall, 1992.
    連結:
  2. [2] Hogan, N., “Impedance Control: an Approach to Manipulation. Part I - Theory,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp. 1-7, 1985.
    連結:
  3. [3] Hogan, N., “Impedance Control: an Approach to Manipulation. Part II - Implementation,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp. 8-16, 1985.
    連結:
  4. [4] Hogan, N., “Impedance Control: an Approach to Manipulation. Part III - Application,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp. 17-24, 1985.
    連結:
  5. [5] Hogan, N., “Stable Execution of Contact Tasks Using Impedance Control,” IEEE International Conference on Robotics & Automation, Vol. 2, pp. 1047-1054, 1987.
    連結:
  6. [6] Mason, M.T., “Compliance and Force Control for Computer Controlled Manipulators,” IEEE Transaction on Systems, Man and Cybernetics , Vol. SMC-11, pp.418-432, 1981.
    連結:
  7. [7] Raibert, M.H. and Carig, J.J., “Hybrid Position/Force Control of Manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control, pp.126-133, 1981.
    連結:
  8. [8] Mills, J. K., Goldenberg, A. A., ” Force and Position Control of Manipulators During Constrained Motion Tasks,” IEEE Trans. in Robotics and Automation, Vol. 5, No. 4, pp. 30-46 , Feb. 1989.
    連結:
  9. [9] Peng, Z. X., Aadchi, N.,“ Position and Force Control of Manipulators without Using Force Sensors,” JSME International Journal, Vol. 35, No. 2, pp. 252-258, Jun. 1992.
    連結:
  10. [10] Wang, D., McClamroch, N. H.,” Position/Force Control Design for Constrained Mechanical System: Lyapunov’s Direct Method,” IEEE Conference on Decision and Control, Vol. 2, pp. 1665-1669, Dec. 1989.
    連結:
  11. [11] Hu, Y. R., Goldengerg, A. A., Zhou, C.,” Motion and Force Control of Coordinated Robots During Constrained Motion Tasks,” International Journal of Robotics Research, Vol. 14, No. 4, pp. 351-365, Aug. 1995.
    連結:
  12. [12] Wittenburg, J.,” Nonlinear Equations of Motion for Arbitary System of Interconnected Rigid Bodies,” Symposium on the Dynamics of Multibody System, Munich, Germany, Pro. Published by Spring-Verlag, K. Magnus, editor, 1987.
    連結:
  13. [14] Wang, D., McClamroch, N. H.,” Feedback Stabilization and Tracking of Constrained Robots,” IEEE Transaction on Automatic Control, Vol. 33, No.5, pp 419-426, May, 1998.
    連結:
  14. [15] Wen, J.T., Kenneth, K.,“Motion andforce control of multiple robotic manipulators,” Automatica, vol. 28, no. 4, pp. 729–743, 1992.
    連結:
  15. [16] Yao, B. et al., “VSC coordinated control of two manipulator arms in the presence of environmental constraints,” IEEE Trans. Autom. Control,vol. 37, no. 11, pp. 1806–1812, Nov. 1992.
    連結:
  16. [17] Hsu, P., “Coordinated control of multiple manipulator systems,” IEEE Trans. Robot. Autom., vol. 9, no. 4, pp. 400–410, Aug. 1993.
    連結:
  17. [18] Sun, D.and Mills, J.K., “Adaptive synchronized control for coordination of multirobot assembly tasks,” IEEE Trans. Robot. Autom., vol. 18, no.4, pp. 498–510, Aug. 2002.
    連結:
  18. [19] Zhu, W.H., “On adaptive synchronization control of coordinated multirobots with flexible_rigid constraints” IEEE Transactions on Robotics, v 21, n 3, p 520-525, Jun. 2005.
    連結:
  19. [20] Paul, R. P. “ Modeling, Trajectory Calculation, and Servoing of a Computer Controlled Arm,” Technical Report AIM-177, Stanford University Artificial Intelligence Laboratory, 1972.
    連結:
  20. [22] Bejczy, A.,“ Robot Arm Dynamics and Control,” Jet Propulsion Laboratory Technical Memo 33-669, Feb. 1974.
    連結:
  21. [13] Wittenburg, J., Wolz, U.,” MESA VERGE: A Symbolic Program for Nonlinear Articulater-Rigid-Body Dynamics,” ASME Design Engineering Technical Conference, 1985.
  22. [21] Markiewicz, B.,“ Analysis of the Computed Torque Drive Method and Comparison with Conventional Position Servo for a Computed-Controlled Manipulator,” Jet Propulsion Laboratory Technical Memo 33-601, Mar. 1973.