Title

光皮洋香瓜直立式栽培養液、整枝及連作障礙之研究

Translated Titles

Study on the nutrient solution, prunning and continuous cropping obstacle in verticle culture of muskmelon (Cucumis melo L. var inodorous Naud).

DOI

10.6845/NCHU.2014.00849

Authors

林祥智

Key Words

無 ; no

PublicationName

中興大學園藝學系所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

宋妤

Content Language

繁體中文

Chinese Abstract

甜瓜(Cucumis melo L.)為高經濟價值果菜類,為生產高品質甜瓜利用直立式整枝、養液滴灌及無土介質栽培模式以增加單位面積產量,穩定‘蜜世界’甜瓜生殖生長。甜瓜栽培後常有連作障礙,造成瓜類栽培上田區更新之問題,需研究造成連作障礙之原因及解決連作障礙之方法。 以正常山崎氏養液栽培‘蜜世界’,以雙蔓整枝留兩蔓方式可於子蔓第 11∼13節得 100 %著果率,保留一蔓另一蔓疏蔓程度越大,使第 11∼13 節位子蔓著果率下降,對照(單蔓)著果率及雙蔓去一蔓處理則顯著最低,約 15∼20 %。留兩蔓處理植株有最高鮮、乾重及全株葉面積及葉片數,分別為 234.5 g、47.6 g、18486.9 平方公分及 58 片葉,著果孫蔓指標葉中有最高之可溶性糖含量及澱粉含量,分別為 12.3 及 11.7 mg/g,果實重量及果肉厚約 1452.3 g 及 3.21 公分,對照單蔓整枝最低分別為 981.5 g 及 2.95 公分,糖度則隨著果實重量增加而減少,以對照有最高之果實糖度 16.0 ∘ Brix,保留兩蔓最低,為 14.3 ∘Brix。 將山崎氏甜瓜養液硝酸鉀配方以 1/2KCl 及全 KCl 替代,與對照組相比 ‘蜜世界’甜瓜之莖徑、株高、葉面積及葉綠素顯著較低,第 11∼13 著果率最高可達到100 %,子蔓指標葉可溶性糖含量與對照相比顯著最高,約 13.7 mg/g,澱粉較低。果實重量及果肉厚度以全 KCl 處理顯著最低,1/2 KCl 與對照無顯著差異,糖度以1/2 KCl 及全 KCl 最高,達 15.5 ∘ Brix。 以 1/2 KCl 滴灌‘蜜世界’進行著果節上分別保留 12 片、15 片及 18 片葉,頂葉以 12、15 片有最高鮮、乾重、葉面積及葉綠素。於母蔓著果節位上之著果葉可溶性糖及澱粉含量隨著留果節上留葉片數越多,其含量隨之增加,頂葉則無顯著差異,果實重量、果肉厚及糖度表現以著果節上留 15 片葉最佳,分別為 1641.9 g、2.5 公分及 14.0 ∘ Brix。 以連作一次介質萃取液進行‘金姑娘’及‘蜜世界’甜瓜種子發芽,隨連作次數增加其萃取液對種子發芽抑制越強,以連作二次及三次最低,‘金姑娘’約 15 %左右,‘蜜世界’約 8 %左右。將連作介質進行育苗,隨連作次數增加其苗生長越差,鮮、乾重下降,以連作三次抑制率最高,‘蜜世界’由 3.75 g 及 0.40 g 分別減少為 2.41 g及 0.22 g,‘金姑娘’3.55 g 及 0.41 g 分別減少為 2.10 g 及 0.21 g。 連作介質進行淹水及菌種處理栽培兩品種甜瓜,以新介質及淹水 2 天植株之植株鮮及乾重與對照無顯著差異,‘金姑娘’分別為 82.6 g 及 12.6 g,‘蜜世界’則分別為 92.7 g 及 21.4 g 著果葉之葉綠素螢光參數ΔFv/Fm(最大光合作用速率) 於金姑娘以對照、淹水 2 天及木黴菌處理最佳,在栽培期間內可維持在 0.78∼0.83,‘蜜世界’則維持在 0.80,‘金姑娘’於連作一次處理降至 0.73,‘蜜世界’則約為 0.72。定植後 70 天調查各葉綠素螢光參數值,‘金姑娘’與‘蜜世界’以連作後淹水 2 天處理在ΔFv/Fm、ETR、qP 及 NPQ 螢光參數值中表現最佳,並與對照無顯著差異。果實重量、果肉厚及糖度以連作後淹水 2 天之果實表現與對照無顯著差異,‘金姑娘’分別為 431.3 g 及 15.5 ∘Brix,‘蜜世界’分別為 832.3 g 及 12.7 ∘Brix。 調查未耕鋤前連作介質距離根圈(下胚軸)不同距離之介質總酚,越靠近下胚軸介質總酚含量越低約 29.4∼27.5 µg/g,pH 值約 6.24,距離下胚軸 10 公分至 20公分處最高,約 57.4 ∼56.1 µg/g 左右。不同連作次數介質於淹水 2 天後總酚含量降至 15.4∼16.3 µg/g 左右,pH 為 6.7,EC 值為 0.3∼0.4 ds/m。 調查不同處理介質總酚累積程度 以連作一次介質試驗後可累積到 80.1 µg/g,連作一次菌種處理為 50.9∼74.5 µg/g,淹水處理之介質減少總酚累積,約為 28.2 µg/g 與新介質無顯著差異。介質放置近三個月後,木黴菌或溶磷菌處理總酚降解率顯著最高,降解 20.6∼26.0 %的總酚含量,而連作介質及淹水 2 天處理則無明顯之總酚降解情形。HPLC 分析兩品種甜瓜之根系及介質酚酸,兩品種甜瓜根系組織中酚酸含 gallic acid、ρ-hydroxybenzoic acid 及 m-hydroxybenzoic acid,以前二者含量最多,連作介質酚酸種類依含量高低,依次為 gallic acid、3,4-dihydroxybenzoic acid 及 ρ-hydroxybenzoic acid。連作次數增加至二次及三次,介質中 ρ-hydroxybenzoic acid 增加。

English Abstract

In order to produce high quality melons, a fruit with a high economic value, methods such as pruning and verticle trellising, drip-irrigation with nutrient solutions, and soilless techniques have been used to increase the yield. Due to the cultivation of melons often experiencing the continuous cropping problems, good crop rotation in the same soil for a period of years is required. Therefore, development of a method that can overcome the continuous cropping obstacle when growing melons is needed. muskmelon (Cucumis melo L.) ‘Honey World’ was grown in Yamazaki’s nutrient solution. With pruning treatment with dual stems by retaining two secondary vines, a 100 % fruit set rate was achieved at nodes 11-13 on the secondary vines. With one stem unpruned and the other pruned, an increased pruned degree of the secondary vines resulted in a significant decrease in the fruit set rate. With pruning treatment with only one retained (control), the fruit set rate was the lowest-only 15-20 % was achieved. The group with dual stems had the highest fresh weight, dry weight, leaf area of the whole plant, and number of leaves (234.5 g, 47.6 g, 18486.9 cm2 and 58 leaves, respectively). In addition, in this treatment, the additional lateral brenches with fruits set had the highest contents of soluble sugar and starch in their index leaves, which were 12.3 and 11.7 mg/g, respectively. The fruit weight and flesh thickness were 1452.3 g and 3.21 cm, respectively. In contrast, the fruit growth was decreased with an increasing pruned degree of the secondary vines, the fruit weight and flesh thickness in the control (with single stem) being 981.5g and 2.95 cm, respectively. The sugar content of the fruit was increased along with the reduced fruit weight, the control group having the highest total soluble solid (TSS) of 16.0 ∘Brix, and the lowest TSS at 14.3 ∘Brix. The study tested the effect of KCl when used to replace KNO3 in Yamazaki’s nutrient solution, including the KNO3 all being replaced with KCl, or with 1/2 KNO3 being replaced with KCl. The stem diameters, plant heights, leaf areas and chlorophyll contents of the plants in these two KCl replacement treatments were significantly lower than those of the control. Meanwhile, in these two treatments, the fruit set rates at nodes 11-13 could still reach up to 100 %, and the soluble sugar content was 13.7 mg/g, which was significantly higher than that of the control. However, the starch contents were lower than that in the control. In all KNO3 treatments, the fruit weight and flesh thickness were lowest, and in 1/2 KNO3 treatment, the fruit weight and flesh thickness were not significantly different from the control. The TSS values of the fruitsin these two KCl treatments were highest, reaching up to 15 ∘Brix. When drip-irrigation was applied with nutrient solutions of 1/2 KNO3 and 1/2 KCl,the effect on the number of leaves remaining above the fruit set node of the ‘Honey World’ melon was compared. Among 12, 15 and 18 leaves remaining above the fruit set node, 12 and 15 leaves had the highest fresh and dry weights, leaf area, and chlorophyll contents. The soluble sugar and starch contents in the leaves above the fruit set node of the main stem were correlated with the number of leaves remaining above the fruit set node, while the value of the top leaf were not significantly different among the different numbers of leaves remaining. 15 leaves remaining above the fruit set position resulted in the highest fruit weight, flesh thickness, and TSS, which were 1641.9 g, 2.5 cm and 14.0 ∘Brix, repectively. The effect of continuous cropping was studies by testing the inhibition ability of the culture medium extract on the germination percent of ‘Golden lady’ and ‘Honey World’ melon seeds. Using culture medium extract that had been used to grow melon plants 1-3 times, the extract from three continuous croppings showed that medium with increased numbers of continuous croppings resulted in a lower germination rate, the germination rate being 15 % for ‘Golden lady’ seeds and only 8 % for ‘Honey World’ seeds. When the continuous croppings medium was used to culture seedlings, medium with an increased number of continuous cropping showed a higher inhibition effect on plant growth. An increased number of continuous croppings was significantly correlated with reduced fresh and dry weights of the plants: ‘Golden lady’ was reduced from 3.55 g and 0.41 g to 0.21 g, respectively, and ‘Honey World’ was redused from 3.57 g and 0.40 g to 2.41 g and 0.22 g, respectively. The effect of flooding and microbial inoculation were also investigated. New medium with 2-day flooding had no effect on the fresh and dry weights of the plant as compared with the control: ‘Golden lady’ was 82.6 g and 12.6 g, respectively, and‘Honey World’ was 92.7 g and 24.1 g, respectively. The chlorophyll fluorescence parameter ΔFv/Fm (the maximum photosynthetic rate) of the fruit set leaf was highest under control, with medium with 2-day flooding and with trichoderma inoculation:‘Golden lady’ could be maintained at 0.78~0.83 in the growing period, and ‘Honey World’ was 0.80. When the medium had been used for continuous cropping one time, theΔFv/Fm value decined to 0.73 for ‘Golden lady’ and 0.72 for ‘Honey World’. At 70 days after transplanting of ‘Golden lady’ and ‘Honey World’ seedlings, medium with one continuous cropping cycle and after 2 days of flooding treatment showed the best chlorophyll fluorescence parameters (highestΔFv/Fm, ETR, qP and lowest NPQ values), which were no different from those of the control. Medium with one continuous cropping cycle and after 2 days of flooding treatment resulted in a similar fruit weight and TSS to the control: ‘Golden lady’ was 431.3 g and 15.5 ∘Brix, and ‘Honey World’ was 832.3 g and 12.7 ∘Brix. The medium total phenolic compound (TPC) content in the medium at different distances to the hypocotyl was analyzed. Before cropping, medium close at close (< 10 cm) to the hypocotyls had the lowest TPC content of 29.4~27.5 µg/g, and the pH was 6.24, and at a distance of 10-20 cm from the hypocotyls, the TPC content washigher, at 57.4~56.1 µg/g. After continuous cropping, the TPC content was reduced to 15.4~16.3 µg/g in the medium with 2-day flooding treatment; the pH was 6.7 and the Electrical conductivity (EC) was 0.3~0.4 ds/m. The effects of different treatment methods on the TPC content of the medium content was also investigated. Using medium after one continuous cropping cycle, the TPC content was increased to 80.1 µg/g; one continuous cropping cycle and one microbial inoculation could reduce the TPC content to 50.9~74.5 µg/g. Flooding treatment did not affect the accumulated TPC content, which was 28.2 µg/g. After 3 months of storage and with trichoderma and phosphate-solubilizing bacteria (PSB) inoculations, the TPC in the medium was degraded significantly by 20.6~26.0 %. With continuous cropping medium with 2-days flooding treatment, no significant degradation effect was seen. When medium with 2 and 3 continuoul cropping cycle was used, the TPC content in the medium was increased with increased numbers of cycles. Using HPLC to analyze the aromatic acids in the medium and root tissues of two melon cultivars, the root tissues were found to contain gallic acid, ρ-hydroxybenzoic acid and m-hydroxybenzoic acid, the continuous cropping medium contained gallic acid, 3,4-dihydroxybenzoic acid and ρ-hydroxybenzoic acid.

Topic Category 農業暨自然資源學院 > 園藝學系所
生物農學 > 農業
Reference
  1. 王毓華、蘇俊峰、楊智凱、林毓雯、林楨祐、魏夢麗。2011。土壤蒸汽處理對溫室東方甜瓜生育之影響。台灣農業研究 60(3):167-177。
    連結:
  2. 林世旻。2011。黃皮洋香瓜直立式栽培之結果生理及使用NaCl對果實品質之影響。國立中興大學園藝學系研究所碩士論文。台中。
    連結:
  3. 施純堅。1999。澎湖地區高品質洋香瓜栽培之研究 Ⅱ. 種植其與結果節位上方葉片數對溫室洋香瓜生長與品質之影響。高雄區農業改良場研究會報 10:51-63。
    連結:
  4. 陳吉村。2009。土壤改良增進施肥效果。花蓮區農業專訊 65:5-7。
    連結:
  5. 黃賢良、鄭安秀、陳文雄。1999。隧道式洋香瓜栽培管理。台南區農業改良場技術專刊(No.92) 88-6。
    連結:
  6. 蔡宜峰、莊作權、黃裕銘。1993。一般有機質在土壤中礦化潛能及礦化速率之估算。永續農業研討會專集 32:69-77。
    連結:
  7. 鄭安秀、黃圓滿、黃瑞彰、陳昇寬、彭瑞菊。2009。洋香瓜安全生產管理。台南
    連結:
  8. 羅朝村。1997。木黴菌在作物病害管理上的應用。有益微生物在農業上的應用研討會專刊 p. 57-62。
    連結:
  9. Asao, T., M. Asaduzzamana, Md. Fuad Mondala, M. Tokura, F. Adachi, M. Ueno, M. Kawaguchi, S. Yanof, and T. Bang. 2013. Impact of reduced potassium nitrate concentrations in nutrientsolution on the growth, yield and fruit quality of melon in hydroponics. Scientia Hort. 164:221-231.
    連結:
  10. Asao, T., M. Umeyama, K. Ohta, T. Hosoki, N. Ito, and H. Ueda. 1998. Decrease of yield of cucumber by non-renewal of the nutrient hydroponic solution and its reversal by supplementation of activated charcoal. J. Jap. Soc. Hort. 67: 99-105.
    連結:
  11. Balke, N. E. 1985. Effects of allelochemicals on mineral uptake and associated physiological processes. J. Am. Chem. Soc. 268:161-178.
    連結:
  12. Barzegar, T., F.W. Badeck, M. Delshad, A. K. Kashi, D. Berveiller, and J. Ghashghai. 2013. 13C-labelling of leaf photoassimilates to study the source–sink relationship in two Iranian melon cultivars. Scientia Hort. 151:157-164.
    連結:
  13. Bishnu, P., B. P. Chapagain, and Z. Wiesman. 2004. Effect of potassium magnesium chloride in the fertigation solution as partial source of potassium on growth, yield and quality of greenhouse tomato. Sci. Hort. 99:279-288.
    連結:
  14. Blum, U. 1996. Allelopathic interactions involving phenolic acids. Nematology 28(3):259-267.
    連結:
  15. Booker, F. L., U. Blum, and E. L. Fiscus. 1992. Short-term effect of ferulic acid on ion uptake and water relations in cucumber seedling. J. Exp. Bot. 43:649-655.
    連結:
  16. Brown, S. A. 1981. The biochemistry of plants: a comprehensive treatise Secondary plant products. Academic, New York. p.286-287.
    連結:
  17. Buwalda, J. G. and R. E. Freeman. 1986. Melons: effects of vine pruning and nitrogen on yields and quality. N.Z. J. Crop Hort. Sci. 14:355-359.
    連結:
  18. Chad, M. R. James, P. Shroyer, and G. M. Paulsen. 2000. Allelopathy of sorghum on wheat under several tillage systems. Agron. J. 92:860-867.
    連結:
  19. Chon, S. U. and C. J. Nelson. 2013. Allelopathic dynamics in resource plants, p. 81-105.In: A. Cheema and M. Farooq (eds.).Allelopathy. Springer., London .
    連結:
  20. Chon, S. U., S. K. Choi, S. Jung, H. G. Jang, B. S. Pyo, and S. M. Kim. 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Protection 21:1077-1082.
    連結:
  21. Chou, C. H. and H. J. Lin. 1976. Autointoxication mechanism of Oryza sativa L. phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2:353-367.
    連結:
  22. Dzafic, E., P. Paula, M. Likar, M. Regvar, and V. M. Katarina. 2013. The arbuscular mycorrhizal fungus Glomus mosseae alleviates autotoxic effects in maize (Zea mays L.). Eur. J. Soil Biol. 58:59-65.
    連結:
  23. Farooq, M., A. A. Bajwa, S. A. Cheema, and Z. A. Cheema. 2013. Application of allelopathy in crop production. Int. J. Agric. Biol. 15:1367-1378.
    連結:
  24. Fukuhara, K., K. Shimizu, and L. Kubo. 2004. Arudonine, an allelopathic steroidal glycoalkaloid from the root bark of Solanum arundo Mattei. Phytochemistry 65: 1283-1286.
    連結:
  25. Hao, Z. P., Q. Wang, P. Christie, and X.L. Li. 2007. Allelopathic potential of watermelon tissues and root exudates. Scientia Hort. 112:315-320.
    連結:
  26. Hartmann, T., T. M. Kutchan, and D. Strack. 2005. Evolution of metabolic diversity. Phytochemistry 66(11):1198-1199.
    連結:
  27. Hisashi, K. N., I. Takeshi, S. Noriko, and Y. Shosuke. 2002. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol. Plantarum 115: 401-405.
    連結:
  28. Hrubcová, M., M. Cvikrová, and F. Pospíšil. 1981. Changes of 3,4-dihydroxybenzoic and 4-hydroxybenzoic acids in Nicotiana tabacum cell suspension culture. Biol. Plantarum 23(4): 318-320.
    連結:
  29. Huang, B. and H.W. Gao. 1999. Physiological responses of diverse tall fescue cultivars to drought stress. HortScience 34:897-901.
    連結:
  30. Huang, L. F., L. X. Song, and X. J. Xia. 2013. Plant-soil feedbacks and soil sickness: from mechanismsto application in agriculture. J. Chem. Ecol. 39:232-242.
    連結:
  31. Inderjit. and K. M. M. Dakshini. 1994. Allelopathic effect of Pluchea lanceolata (Asteraceae) on characteristics of four soils and tomato and mustard growth. Am. J.Bot. 81:799-804.
    連結:
  32. Inderjit. and S. O. Duke. 2003. Ecophysiological aspects of allelopathy. Planta 217: 529-539.
    連結:
  33. Inderjit. 1996. Plant phenolics in allelopathy. Bot. Rev. 62: 186-202.
    連結:
  34. Kanai, S., R. E. Moghaieb, H. A. El-Shemy, R. Panigrahi, P. K. Mohapatra, J. Ito, N. T. Nguyen, H. Saneoka, and K. Fujita. 2011. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci. 180:368-374.
    連結:
  35. Kaur, H., Inderjit, and S. Kaushik. 2005. Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol. Biochem. 43:77-81.
    連結:
  36. Kobza, J. and F. A. Einhellig. 1987. The effects of ferulic acid on the mineral nutrition of grain sorghum. Plant Soil 98:99–109.
    連結:
  37. Lin, D., D. Huang, and S. Wang. 2004. Effects of potassium levels on fruit quality of muskmelon in soilless medium culture. Scientia Hort. 102:53-60.
    連結:
  38. Liu, D. L. and J. V. Lovett. 1993. Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley. J. Chem. Ecol. 19:2217-2230.
    連結:
  39. Long, R. L., K. B. Walsh, D. M. Midmore, and G. Rogers. 2004. Source-sink manipulation to increase melon (Cucumis melo) fruit biomass and soluble sugar content. Aust. J. Agric. Res. 55: 1241-1251.
    連結:
  40. MacLeod, A. J., G. MacLeod, and G. Subramanian. 1988. Volatile aroma constituents of celery. Photochemistry 27:373-375.
    連結:
  41. Mahmoodzadeh, H., F. Abbasi, and Y. Ghotbzadeh. 2011. Allelopathic Effects of Root Exudate and Leaching of Rice Seedlings on Hedgemustard (Sisybrium Officinale). Res. J. Env. Sci. 5:1-7.
    連結:
  42. Mansfield,T. A. and R. J. Jones. 1971. Effects of abscisic acid on potassium uptake and starch content of stomatal guard cells. Planta 101:147-158.
    連結:
  43. Monica, S., B. D. Abrosca, A. Esposito, S. Pacifico, P, Monaco, and A. Fiorentino. 2003. Plant growth inhibitors: allelopathic role or phytotoxic effects? focus on mediterranean biomes. Phytochem. Rev.12:803-830.
    連結:
  44. Oxborough, K. and N. R. Baker. 1997. An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels. Plant Cell and Environment 20:1473-1483.
    連結:
  45. Pérez, J. and O. N. Juan.1991. Root exudates of wild oats: allelopathic effect on spring wheat. Phytochemistry 30:2199-2202.
    連結:
  46. Plaut, Z., M. L. Mayoral, and L. Reinhold. 1987. Effect of altered sink:source ratio on photosynthetic metabolism of source leaves. Plant Physiol. 85:786-791.
    連結:
  47. Raschke, K. and R. Hedrich. 1985. Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves. Planta 163:105-118.
    連結:
  48. Sturz, A. V. and J. Kimpinski, 2004. Endoroot bacteria derived from marigold (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil. 262: 241-249.
    連結:
  49. Takeuchi, Y., S. Kawaguchi, and K. Yoneyama. 2001. Inhibitory and promotive allelopathy in rice (Oryza sativa L.). Weed Biol. Manag. 1:147-156.
    連結:
  50. Valantin, M., C. Gary, B. E. Vaissie're, and M. Tchamitchian. 1998. Changing sink demand affects the size but not the specific activity of assimilate sources in cantaloupe (Cucumis melo L.). Ann. Bot. 82:711-719.
    連結:
  51. Wacker, T. L., G. R. Safir, and C. T. Stephens. 1990. Effects of ferulic acid on Glomus fasciculatum and associated effects on phosphorus uptake and growth of asparagus (Asparagus officinalis L.). J. Chem. Ecol. 16:901-909.
    連結:
  52. Walker, D. W., T. J. Hubbell, and J. E. Sedberry. 1989. Influence of decaying sweet potato crop residues on nutrient uptake of sweet potato plants. Agr. Ecosyst. Environ. 26:45-52.
    連結:
  53. Wang, C., M. Zhu, X. Chen, and B. Qu. 2011. Review on allelopathy of exotic invasive plants. Procedia Engineering. 18 : 240-246.
    連結:
  54. Wardlaw, I. F. 1990. The control of carbon partitioning in plants. New Phytol. 27:341-381.
    連結:
  55. Wu, H. S., H. S. Shuang, J. M. Han, Y. D. Liu, and S. D. Liu. 2009. The effect in vitro of exogenously applied ρ-hydroxybenzoic acid on Fusarium oxysporum f. sp. Niveum. Phytopathol. Mediterr. 48:439-446.
    連結:
  56. Young, C. C. 1984. Autointoxication in root exudates of Asparugus officinalis L. Plant and Soil. 82:247-253.
    連結:
  57. Young, C. C. and T.C. Chou. 1985. Autotoxication in residue of Asparagus Officinalis L. Plant and Soil. 85:385-393.
    連結:
  58. Yu, J. Q. and Y. Matsui. 1997. Effects of root exudates of cucumber (Cucumis sativus L.) and allelochemicals on ion uptake by cucumber seedling. J. Chem. Ecol. 23:817-827.
    連結:
  59. Yu, J. Q., S. F. Ye, M. F. Zhang, and W. H. Hu. 2003. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 31:129-139.
    連結:
  60. Zhang, E. P., S. H. Zhang, W. B. Zhang, L. L. Li, and T. L. Li. 2010. Effects of exogenic benzoic acid and cinnamic acid on the root oxidative damage of tomato seedlings. J. Hortic. For. 2: 22-29.
    連結:
  61. Zhang, F., Z. Zhua, X. Yang, W. Ran, and Q. Shen. 2013. Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl. Soil Ecol. 72:41-48.
    連結:
  62. Zhao, H. L., Q. Wang, X. Ruan, C. D. Pan, and D. A. Jiang. 2010. Phenolics and plant allelopathy. Molecules 15: 8933-8952.
    連結:
  63. 丁文彥。1993。蘭陽地區青蔥栽培土壤酸化及連作障礙之改進方法。花蓮區農業專訊 6:2-4。
  64. 乜蘭春、馮振中、周鎮。2007。苯甲酸和對羥基苯甲酸對西瓜種子發芽及幼苗生長的影響。中國農學通報 23:237-239。
  65. 牛麗紅、賀超興、陳雙臣。2012。日光溫室採收期不同氮鉀配比施肥對黃瓜產量品質的影響。中國農學通報 28(31):256-260。
  66. 吳鳳芝、潘凱、馬鳳鳴、王學東。2004。苯丙烯酸對黃瓜幼苗光合作用和細胞超微結構的影響。園藝學報 31:183-188。
  67. 李立昆、李玉紅、司立征、程智慧、陳明月。2010。不同施氮水準對厚皮甜瓜生長發育和產量品質的影響。西北農業學報 19:150-153。
  68. 李志文、周寶利、劉翔、張平。2011。茄科植物體內糖苷生物鹼的生理生態活性研究進展。上海農業學報 27:129-134。
  69. 李雪利、李正、李彥濤、張文平、曾憲立、鄭文冉、劉國順、葉協鋒。2009。植物化感作用研究進展。中國農學通報 25:142-146。
  70. 邱立友, 戚元成, 王明道, 賈新成。2010。植物次生代謝物的自毒作用及其與連作障礙的關係。河南農業大學生命科學學院 42 (1):1-7。
  71. 封海勝、張思蘇、萬書波。1993。連作花生土壤養分變化及對施肥反應。中國油料 2:53-57。
  72. 胡敏、唐瑞永、張玉鑫、陳年來。2009。葉果比對甜瓜葉片衰老的影響。西北農業學報 18(4):295-300。
  73. 孫光聞、陳日遠、劉厚誠。2005。設施蔬菜連作障礙原因及防治措施。農業工程學報 21:184-188。
  74. 高強、謝新蕊、奚玉培、張志忠。2013。甜瓜自毒作用的生理生化機制研究。農學學報 3:30-33。
  75. 張秋菊、張愛華、孫晶波、張連學。2012。植物體中萜類物質化感作用的研究進展。生態環境學報 21(1): 187-193。
  76. 張愛慧。2004。氮鉀營養對甜瓜生理效應及品質的影響。金陵科技學院學報20(1):55-58。
  77. 張瑞卿。1987。利用溫室栽培洋香瓜。豐年 37(7):200-222。
  78. 許如意。2006。氮素營養對網紋甜瓜生長和品質的影響。安徽農學通報 12:46-48。
  79. 陳玉雯。2001。芹菜連作障礙之研究。國立中興大學園藝學系研究所碩士論文。
  80. 台中。
  81. 陳書霞、高晶霞、王生偉、李偉鋒。2012。不同整枝留瓜方式對大棚厚皮甜瓜源庫關係的調節效應。西北農業學報 21:12-17。
  82. 喬昌萍、唐瑞永、胡敏、陶永紅、陳年來。2009。整枝方式及留果數對甜瓜葉片發育和果實生產的影響。安徽農業科學 37(5):1972-1973。
  83. 程瑩、白壽發、莊敬華、高增貴、劉志恒。2011。甜瓜殘茬腐解物對鐮孢枯萎病的助長作用。中國農學通報 27:217-221。
  84. 楊田甜、杜海榮、陳剛、鄧鵬、甄偉。2012。植物化感作用的研究現狀及其在農業生產中的應用。浙江農業學報 24:343-348。
  85. 楊利明、陳長寶、王秀全、張連學、田義新。2004。長白山區蔘後地生態恢復與再利用模式及其存在的問題。吉林農業大學學報 26:546-549。
  86. 楊秋忠。1997。土壤與肥料 第六版。農世股份有限公司。pp.435。
  87. 萩原十、余吾卓也。1944。西瓜ソ葉面積シ果実シソ関係。日本園藝學雜誌 13(3):272-276。
  88. 鄒麗芸、喻景權。2004。西瓜植株水浸提物對西瓜種子萌發的影響。浙江農業科學4:181-182。
  89. 劉軍、溫學森、郎愛東。2007。植物根系分泌物成分及其作用的研究進展。山東大學藥學院 9(3):63-65。
  90. 劉義玲、李天來、孫周平、陳亞東。2009。根際低氧脅迫對網紋甜瓜光合作用、產量和品質的影響。園藝學報 36:1465-1472。
  91. 蔡竹固、童伯開、陳瑞祥。1999。甜瓜病害的診斷及其防治。國立嘉義技術學院農業推廣委員會。pp.20。
  92. 蔡東纂。 2006。 臺灣植物線蟲病害圖鑑。農委會動植物防疫檢疫局及中興大學農業推廣中心。 pp.238。
  93. 區農業改良場技術專刊。
  94. 韓麗梅、沈其榮、鞠會豔、閻石、閻飛。2002。大豆地上部水浸液的化感作用及化感物質的鑒定 22:1426-1432。
  95. 冥戶良洋、湯橋 勤、施山紀男、今田成雄。1992。ф①⑦果實デソ光合成產物ソ
  96. 轉流、分配ズ及タエ葉位れプッ灌水量ソ影響。日本園藝學雜誌 60(4):897-903。
  97. 神谷園一。1982。各作型мЧЭソ基本技術シ生理。農業技術大系ф①⑦類。財団法人農山漁村文化協会編印。p. 150-154。
  98. Ahrabi, F., S. Enteshari, and A. Moradshahi. 2011. Allelopathic potential of para-hydroxybenzoic acid and coumarin on canola: Talaieh cultivar. J. Med. Plants Res. 5:5104-5109.
  99. Asaduzzaman, M., M. Fuad Mondal, T. Ban, and T. Asao. 2013. Selection of ideal succeeding crops after asparagus, taro and beans replanting field in seedling growth bioassay, p. 32:1-22. In: A. Cheema and M. Farooq (eds.). Allelopathy. Springer., London .
  100. Asao, T., H. Kitazawa, K. Ushio, Y. Sueda, T. Ban, and M. H. R. Pramanik. 2007.
  101. Autotoxicity in some ornamentals with the means to overcome it. HortScience
  102. 42:1346-1350.
  103. Bertin, C., R. N. Paul, S. O. Duke, and L. A. Weston. 2003. Laboratory assessment of the allelopathic effects of fine leaf fescues. J. Chem. Ecol. 29:1919-1937.
  104. Chiapusio, G., V. E. J. Jassey, M. I. Hussain, and P. Binet. 2013. Evidences of bryophyte allelochemical interactions: the case of sphagnum, p. 39-54. Allelopathy. In: A. Cheema and M. Farooq (eds.).Allelopathy. Springer., London .
  105. Chon, S.U., J. A. Jennings, and C.J . Nelson. 2006. Alfalfa (Medicago sativa L.) autotoxicity : current status. Allelopath. J. 18:57-80.
  106. Fischer, N. H. 1986. The function of mono and sesquiterpenes as plant germination and growth regulators. The science of allelopathy. New York. p. 203-218
  107. Kaya, C., D. Higgs, H. Kirnak, and I. Tas. 2003. Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant and Soil. 253:287-292.
  108. Kevin, O. and N. R. Baker. 1997. Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth. Res.54:135-142.
  109. Koocheki, A., B. Lalegani, and S. A. Hosseini. 2013. Ecological consequences of allelopathy, p. 25-38. In: A. Cheema and M. Farooq (eds.).Allelopathy. Springer. London.
  110. Lester, G. E., J. L. Jifon, and G. Rogers. 2005. Supplemental foliar potassium applications during muskmelon (Cucumis melo L.) fruit development can improve fruit quality, ascorbic acid and beta-carotene contents. J. Amer. Soc. Hort. Sci.130:649-653.
  111. MuahmmadWaheed, U. R., H. Muhammad, Ali. Mubasher, C. B. Mustafa, J. Shafi, and F. Iqbal. 2013. Allelopathy of Brassica. a review. Sci. Agri. 3: 46-53.
  112. Rice, E. L. 1984. Allelopathy. Academic Press, New York.
  113. Souto, X. C., G. Chiapusio, and F. Pellissier. 2000. Relationships between phenolics and soil microorganism in spruce forest : significance for natural regeneration. J. Chem. Ecol. 26:2025–2034
  114. Susuka, E. and S. Masada. 1961. Studied on muskmelon (Cucumis melo L.) of sugar content in Earl’s Favorite. Bull. Fac. Ed. Sizuoka Univ. 12:205-213.
  115. Yu, J. Q., S. Y. Shou, Y. R. Qian, Z. J. Zhu, and W. H. Hu. 2000. Autotoxic potential of cucurbit crops. Plant and Soil 223: 147-151.
  116. Zhao, Z. Z., S. L. Zhang, C. J. Xu, K. S. Cheng, and Sh.T. Liu. 2001. Roles of sucrose-metabolizing enzymes in accumulation of sugars in satsuma mandarin fruit. Acta Hort. Sinica. 28:112-118.