Title

二硼化鎂奈米結構的製備及其物理性質的研究

Translated Titles

Synthesis of MgB2 Nanostructures and its Physical Properties Measurements

Authors

劉士誠

Key Words

奈米結構 ; 奈米線 ; 奈米微粒 ; 二硼化鎂 ; nanostructures ; nanowires ; nanoparticles ; MgB2

PublicationName

中興大學物理學系所學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

藍明德

Content Language

繁體中文

Chinese Abstract

我們利用脈衝雷射蒸鍍法製備MgB2奈米微粒,得到粒徑介於5 ~ 500 nm的奈米微粒。首度利用液態脈衝雷射沉積製備MgB2奈米微粒,製備平均粒徑37 nm的MgB2奈米微粒。並以兩階段化學合成製備MgB2奈米線在MgO(100)及Si(100)基板上。由臨界溫度量測可得脈衝雷射蒸鍍法以及液態脈衝雷射沉積製備的MgB2奈米微粒,其臨界溫度值與塊材相近,並沒有明顯的下降,比較ZFC﹝零場冷卻﹞和FC﹝加場冷卻﹞,可得知其結晶性較塊材好。成長在MgO(100)基板上的MgB2奈米線,其臨界溫度 為30 K,成長在Si(100)基板上的MgB2奈米線,其臨界溫度 為35K,與塊材相較,超導性較差,但釘紮效應非常強。

English Abstract

We successfully synthesized MgB2 nanoparticles by Pulsed Laser Deposition (PLD) technique, Liquid Pulsed Laser Deposition (LPLD) technique and MgB2 nanowires. The sizes of the nanoparticles fabricated by PLD technique range from 5 nm to 500 nm while those fabricated by LPLD technique distribute from 5 nm ~ 50 nm. The nanowires have diameters of 80-100 nm and length up to several micrometers. By SQUID measurement, the MgB2 nanoparticles have a similar superconducting transition temperature of 39 K which is close to value of the bulk material. Furthermore, the pinning effect of nanoparticles were also weak. The MgB2 nanowires had a superconducting transition temperature 30K for MgB2 nanowires synthesized on MgO(100) substrate and 35K for MgB2 nanowires synthesized on Si(100) substrate.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學系所
Reference
  1. e. 奈米材料導論 曹茂盛等編著(2002)
    連結:
  2. f. 真空技術與應用 國科會精密儀器發展中心出版(2001)
    連結:
  3. g. 儀器總覽5材料分析儀器 國科會精密儀器發展中心出版(1998)
    連結:
  4. 12. P Badica, K Togano, S Awaji, K Watanabe. Supercond. Sci.Technol.2006,19,242-246
    連結:
  5. 14. J. S. Golightly and A. W. Castleman, Jr. J. Phys. Chem. B.2006
    連結:
  6. 19. C. Buzea,T. Yamashita Supercond.Sci.Technol.2001,14,115-146
    連結:
  7. 中文參考書目
  8. a. 超導物理 張裕桓、李玉芝 等著 (1992)
  9. b. 磁性技術手冊 金重勳主編 (2002)
  10. c. 奈米科技 馬遠榮著(2002)
  11. d. 奈米材料和奈米結構 張立德 牟季美著(2002)
  12. h. 蔡佩儒 “金屬超導MgB2-XCX的物理性質研究”2002 國立中興大學物理研究所碩士論文
  13. i. 游駿偉 “單一氧化鋅奈米柱有序陣列製備與其光電特性之量測”2005 國立中興大學物理研究所碩士論文
  14. 英文參考資料
  15. 1. J. Nagamatsu, N. Nakagawa, T. Muranaka,Y Zenitani, J Akimitsu Nature.2001,410,63-64
  16. 2. A.Gümbel, J.Eckert, G. Fuchs, K. Nenkov, K.-H. Müller, and L. Schultz APPLIED PHYSICS LETTERS.2002,2725,80
  17. 3. H. Abe, M. Naito, K. Nogi, M. Matsuda, M. Miyake, S. Ohara, A. Kondo, T, Fukui Physics C.2003,391,211-216
  18. 4. S. Li, T, White, C. Q. Sun, Y. Q. Fu, J. Plevert, and K. Lauren J. Phys. Chem. B.2004,108,16415-16419
  19. 5. Slusky, J. S.; Rogado, N.; Regan, K. A.; Hayward, M. A.; Khalifah,P.; He, T.; Inumaru, K.; Loureiro, S. M.; Haas, M. K.; Zandbergen, H. W.;Cava, R. J. Nature 2001, 410, 343.
  20. 6. C. Cui, D. Liu, Y. Shen, J. Sun, F. Meng, R. Wang, S. Liu, A.L. Greer, S. Chen, B.A. Glowacki Acta MATERIALIA 2004,52,5757-5760
  21. 7. D.D. Radev, M. Marinov, V. Tumbalev, I. Radev, L. Konstantinov PHYSICA C 2005,418,53-58
  22. 8. V. Ganpat Pol, S. Vilas Pol, I. Felner, A. Gedanken.Chemical Physics Letters 2006,433,115-119
  23. 9. Y. Wu,B. Messer,Peidong Adv.Mater.2001,13,1487-1489
  24. 10. R.Ma,Y. Bando,T. Mori,D. Golberg Chem.Mater.2003,15,3194-3197
  25. 11. Q. Yang, J. Sha, X. Ma, Y. Ji, D. Yang Supercond. Sci.Technol.2004,17,31-33
  26. 13. P.N. Barnes, P.T. Murray, T.Haugan, R.Rogow, G. P. Perram. PHYSICA C,2002,377,578-584
  27. 15. C.H. Cheng, Y. Zhao, T. Machi, N. Koshizuka, M. Murakami. PHYSICA C,2003,385,449-460
  28. 16. Z. W. Pan,Z. R. Dai,Z. L. Wang Science,2001,291,1947-1949
  29. 17. W.N.Kang,H.-J. Kim,E.-M. Choi,C.U.J,Sung-Ik Lee SCIENCE 2001 292 1521-1523
  30. 18. H.-x. Lu,H.-w. Sun,G.-x. Li,C.-p. C.,D.-lin Y.,X. Hu CERAMICS INTERNATIONAL.31,2005,105-108
  31. 20. A.Bezryadin,C.N.Lau,M.Tinkham Nature.2000,404,971-974