Title

LED燈應用於植物生長箱栽培萵苣之優化補光光質研究

Translated Titles

Optimization of supplemental light research of LED lights used in plant growth chambers for lettuce cultivating

DOI

10.6845/NCHU.2015.01370

Authors

蔡孟霖

Key Words

太陽能 ; LED燈 ; 植物工廠 ; 萵苣 ; 補光 ; Solar power ; LED lights ; Plant factory ; Lettuce ; Supplemental light

PublicationName

中興大學生物產業機電工程學系所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

王豐政

Content Language

繁體中文

Chinese Abstract

本研究於植物生長箱內採用水耕方式栽種萵苣,以太陽能發電結合市電併聯系統供給人工光源使用,控制生長箱內作物生長環境如:溫度、濕度、二氧化碳濃度與養液pH值、EC值等環境參數。藉由在補光期給予不同光波長,並量測生長外觀、地上部鮮乾重、地下部鮮乾重、葉綠素、類胡蘿蔔素與硝酸鹽含量等數據,加以探討補光期對萵苣生長之影響。 在植物生理分析部分,紅光補光處理下的綠蘿蔓及紅皺葉萵苣有最多的葉片數,分別為18及12片;綠皺葉萵苣之葉片數於第35天在各處理組別之葉片數皆為10片。綠蘿蔓及綠皺葉萵苣在藍光補光處理有較佳的株高表現,分別為21.9及20.0 cm;紅皺葉萵苣則是在紅光補光處理有較佳的株高表現為14.7 cm。綠蘿蔓及綠皺葉萵苣在第29天開始有快速生長的趨勢。綠蘿蔓萵苣以紅光補光處理有最佳的地上部鮮重達172 g;紅皺葉及綠皺葉萵苣在對照組處理有最佳地上部鮮重表現,分別為93及151 g。紅皺葉及綠皺葉萵苣在對照組處理有較佳的地上部乾重,分別為4.31及6.44 g。三種萵苣在不同補光處理下,在地下部乾重部分皆以對照組處理有較重的表現。紅皺葉及綠皺葉萵苣之葉綠素含量在藍光補光處理時較其他處理組多。紅皺葉萵苣於紅光補光處理相對其他兩種處理組別更能有效利用葉綠素及類胡蘿蔔素;綠皺葉萵苣則是在對照組的處理能比其他處理組別有效地利用葉綠素及類胡蘿蔔素。紅光補光處理的綠蘿蔓萵苣雖然在鮮重高於其他處理組別,但是硝酸鹽含量卻遠低於其他處理組別,顯示在紅光補光處理下有較好的硝酸鹽代謝能力;紅皺葉萵苣在對照組處理下有較佳的硝酸鹽代謝能力;綠皺葉萵苣在紅光補光處理組及對照組之硝酸鹽含量沒有明顯差異,但上述三種萵苣在藍光補光處理組時,硝酸鹽含量都較接近歐盟規定之硝酸鹽含量標準上限。 綜合植物生理分析結果顯示,綠蘿蔓及綠皺葉萵苣在紅光補光處理有較好的表現,紅皺葉萵苣則在對照組處理有較佳的表現。

English Abstract

This study was planted lettuce in plant growth chamber with hydroponic system. Artificial lighting LED was supplied by solar power combined with city electricity. All environmental factors such as temperature, humidity, CO2 concentration, pH value of the nutrient solution, and EC values, etc. were controlled. With the supplemental light of different wavelengths of light given, morphology, fresh weight, dry weight, chlorophyll content, β-carotene content, and nitrates content etc. were measured. In lettuce physiology results, under the red supplemental light, the green romaine and red wrinkled leaf lettuce had the most number of leaves, 18 and 12 respectively. Green wrinkled leaf lettuce leaf number in the first 35 days of each treatment groups in the number of leaves were all 10. Green romaine lettuce and green wrinkled leaf lettuce had the highest plant height in blue supplemental lights, 21.9 and 20.0 cm respectively. Red wrinkled leaf lettuce had a better performance for height, 14.7 cm, in the red supplemental lights treatment. Green romaine and green wrinkled leaf lettuce grew fastly at 29 day after sowing. Green romaine lettuce had the best shoot fresh weight, 172 g, in red supplement lights. Red wrinkled leaf lettuce and green wrinkled leaf lettuce had the best shoot fresh weight in control groups, 4.31 and 6.44 g, respectively. All of three lettuces in control groups had better root dry weight that compared to other supplemental light treatments. Red wrinkled leaf lettuce under red supplemental lights and green wrinkled leaf lettuce under control groups seemed to utilize chlorophyll and carotenoid more efficiently. Red wrinkled leaf lettuce and green wrinkled leaf lettuce had more chlorophyll content in blue supplemental lights than others. In green romaine lettuce, nitrate content was the lowest in red supplemental lights though it had the heaviest shoot fresh weight that seemed red light enhanced the ability of metabolism of nitrate. In conclusion, red supplemental lights in lettuce physiology results was better for green romaine lettuce and green wrinkled leaf lettuce than other treatment. And red wrinkled leaf lettuce had better performance under in control group in this study.

Topic Category 農業暨自然資源學院 > 生物產業機電工程學系所
生物農學 > 生物環境與多樣性
工程學 > 電機工程
Reference
  1. 2. 方煒。2001。自動化植物工廠。農業自動化叢書第十一輯:103-112。
    連結:
  2. 3. 方煒、饒瑞佶。2002。高亮度發光二極體於生物產業之應用。中華農學會報5(5): 432-446。
    連結:
  3. 5. 王慧媛。2010。環境控制下波士頓萵苣兩階段立體化栽培模式之探討。碩士論文。國立台灣大學生物產業機電工程學研究所。
    連結:
  4. 6. 吳正宗。2012。無土栽培的營養管理。台中:國立中興大學土壤環境科學系。
    連結:
  5. 8. 高德錚。2012。臺灣發展蔬菜植物工廠之契機。台中區農業改良場一○一年專題討論專集。
    連結:
  6. 9. 許謙信。2013。LED燈源電照用於抑制菊花開花之研究。臺中區農業改良場研究彙報 119:53-63。
    連結:
  7. 10. 楊純明、李裕娟。2009。從植物之光週期看發光二極體在農業生產上之應用潛力。作物、環境與生物資訊 6:192-200。
    連結:
  8. 12. 趙振勝。2014。混合太陽光電與市電之LED燈應用於植物生長箱栽培皺葉萵苣之研究。碩士論文。國立中興大學生物產業機電工程學系。
    連結:
  9. 16. Cataldo, M. Maroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communication in Soil Science and Plant Analysis 6(1):71- 80.
    連結:
  10. 17. Chang, C. L., and K. P. Chang. 2014. The growth response of leaf lettuce at different stages to multiple wavelength-band light-emitting diode lighting. Scientia Horticulturae 179:78-84.
    連結:
  11. 18. Chen, X. L., W. Z. Guo., X. Z. Xue., L. C. Wang., and X. J. Qiao. 2014. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae 172:168-175.
    連結:
  12. 19. Dougher, T. A. O., and B. Bugbee. 2001. Differences in the Response of Wheat, Soybean and Lettuce to Reduced Blue Radiation. Photochemistry and Photobiology 73(2):199-207.
    連結:
  13. 20. Fu, W., P. Li, Y. Wu, and J. Tang. 2012. Effects of different light intensities on antioxidative enzyme activity, quality and biomass in lettuce. HortScience 39(3):129-134.
    連結:
  14. 21. Goins, G. D., N. C. Yorio, M. M. Sanwo, and C.S. Brown. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes(LEDs) with and without supplemental blue lighting. Journal of Expermental Botany 48(312):1407-1413.
    連結:
  15. 22. Hartmut K. Lichtenthaler. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in enzimology 148 (34): 350-382.
    連結:
  16. 25. Johkan, M., K. Shoji, F. Goto, S. Hashida and T. Yoshihara. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Bontany 75:128-133.
    連結:
  17. 28. Kobayashi, K., T. Amore, and M. Lazaro. 2013. Light-Emitting Diodes (LEDs) for Miniature Hydroponic Lettuce. Optics and Photonics 3(1):74-77.
    連結:
  18. 29. Li, Q., and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany 67:59-64.
    連結:
  19. 30. Lin, K. H., M. Y. Huang, W. D. Huang, M. H. Hsu, Z. W. Yang, and C. M. Yang. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae 150:86-91.
    連結:
  20. 32. Ohashi-kaneko, K., M. Takase, N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology 45(3):189-198.
    連結:
  21. 35. Shen., Y. Z., S. S. Guo, W. D. Ai, and Y. K. Tang. 2014. Effects of illuminants and illumination time on lettuce growth, yield and nutritional quality in a controlled environment. Life Sciences in Space Research 2:38-42.
    連結:
  22. 36. Vänninen, I., D. M. Pinto, A. I. Nissinen, N. S. Johansen and L. Shipp. 2010. In the light of new greenhouse technologies: 1. Plant-mediated effects of artificial lighting on arthropods and tritrophic interactions. Annals of Applied Biology 157(3):393-414.
    連結:
  23. 1. 山崎肯哉、鈴木芳夫、篠原 温。1976。ガ菜ソ養液栽培(水耕)ズ関エペ研究,特ズ培養液管理シノろんソ吸収濃度(n/w)ズ就サ。東教大農紀要(22):53-100。
  24. 4. 王均琍、古明萱、徐志宏、蔡秀隆。2007。屏東:國立屏東科技大學農學院叢書。
  25. 7. 林安秋。1984。作物之光合作用。初版。台北:商務印書館。
  26. 11. 趙建平。2005。蔬菜硝酸鹽累積生理機制研究進展。中國農學通報 1:93-96。
  27. 13. 鍾仁健、游禎義。2004。歐盟蔬菜硝酸鹽限量新規範。農政與農情第146期。取自:http://www.coa.gov.tw/view.php?catid=7631
  28. 14. 台灣月平均日照時數。2011。中央氣象局。取自:
  29. http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_sunshine.htm
  30. 15. Attridge, T. H. 1990. Light and plant responses. 1st ed. New York : Routledge, Chapman and Hall, Inc.
  31. 23. Harry Stijger. 2004. All colours in light are equal for photosynthesis. Flower Tech. 7(2):9-11.
  32. 24. Johkan, M., K.Shoji, F. Goto, S. Hashida and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45(12):1809-1814.
  33. 26. Kim, H. H., G. D. Goins, R. M. Wheeler and J. C. Sager. 2004. Green light supplementation for enhanced lettuce growth under red and blue-light-emitting diodes. HortScience 39(7):1617-1622.
  34. 27. Kitaya, Y., G. Niu, T. Kozai, and M. Ohashi. 1998. Photosynthetic photon flux photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. HortScience 33(6):988-991.
  35. 31. Massa, G. D., H. H. Kim, R. M. Wheeler, and C. A. Mitchell. 2008. Plant Productivity in Response to LED Lighting. HortScience 43(7): 1951- 1956.
  36. 33. Robert C. Morrow. 2008. LED Lighting in Horticulture. HortScience 43(7): 1947- 1950.
  37. 34. Samuolienė, G., A. Brazaitytė, R. Sirtautas, A. Novičkovas, and P. Duchovskis. 2011. Supplementary red-LED lighting affects phytochemicals and nitrate of baby leaf lettuce. Journal of Food, Agriculture and Environment 9(3&4):271-274.
  38. 37. Yorio, N. C., C. L. Mackowiak, R. M. Wheeler and J. C. Sager. 1995. Vegetative growth of potato under high-pressure sodium, high-pressure sodium SON-Agro, and metal halide lamps. HortScience 30(2): 374-376.