Title

飛灰顆粒粗細對高性能混凝土抗壓強度及脆裂韌性之影響

Translated Titles

Effects of Fly Ash Particle Size on Compressive Strength and Toughness of High Performance Concrete

DOI

10.6845/NCHU.2008.01250

Authors

謝忠麒

Key Words

飛灰 ; fly ash

PublicationName

中興大學土木工程學系所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

黃玉麟

Content Language

繁體中文

Chinese Abstract

本文旨在探討飛灰含量及顆粒粗細對高性能混凝土抗壓強度及破裂韌性(fracture toughness)之早期與晚期影響。試驗用之高性能混凝土採用水膠比0.35,飛灰取代水泥量有0%、10%及20%三種,飛灰細度分別為通過No.175、No.250及No.325篩等三種,並於齡期到達時進行試驗。本研究以三點彎矩試驗來測量預裂樑的最大載重,根據量測之載重與變形關係計算出破裂能量值(Gf)與極限應力強度因子(KSIC),以此來代表混凝土破裂韌性大小。最後也以場發式電子顯微鏡(SEM)觀察不同爐石細度、取代率、齡期之微觀差異。 試驗結果顯示,添加部分飛灰於高性能混凝土中,不論是取代10%或20%,對於晚期強度皆有明顯助益,其中又以取代10%者效果較佳;此外,添加細度較高之飛灰可得到較大之混凝土強度。不論在早、晚齡期,飛灰細度越高時,由於其填充效應與反應活性愈佳,混凝土破裂能量值(Gf)與極限應力強度因子(KSIC)有越大之趨勢。以飛灰取代水泥後,將造成混凝土晚齡期Gf值與KSIC值的顯著提昇;惟取代率不宜過大,因過大的取代率反而造成折減,因此建議以10%為宜。再者,混凝土破裂能量值及極限應力強度因子皆與抗壓強度有密切之關聯,其中又以破裂能量值較為直接,其線性迴歸之R2可達0.9543。 從微觀(SEM)來看,齡期56天時在水化反應與卜作嵐反應較完全之作用下,混凝土內部晶相結構更加緻密,孔隙孔徑較14天時小,平面結構持續形成,且有更多的C-S-H膠體產生,其界面結構較緻密,且微裂縫明顯減少。

English Abstract

The study aims to research the effect of the particle size of fly ash on the early and late age fracture toughness of high performance concrete (HPC). In all HPC mixtures, the water/binder ratio is 0.35; the cement replacement ratios are 0%, 10% and 20%; the particle sizes of fly ash have three types of passing through sieves No. 175, No. 250 and No. 325. Three-point-bending test was adopted to measure the load-deflection relations, the maximum loads and so on to get the fracture energy (Gf) and the critical stress intensity factor (KSIC). Finally, all of the specimens were investigated by the SEM microscope. The test results show that adding fly ash into HPC apparently enhances the late age strengths of HPC no matter what the replacement ratio is 10% or 20%. If the particle size is the same, the late age strength of concrete with 10% fly ash is higher than that with 20%. In addition, the smaller the particle size of fly ash the better the late age strengths. No matter what the age is, the HPC with the smaller fly ash always has higher development and values of GF and KSIC because of its well filling effect and pozzolanic reaction. At late age the GF and KSIC values of concrete with 10% fly ash are all higher than those with 20% fly ash. This result indicates that although the fly ash can improve the late age concrete properties, too much fly ash may be disadvantage to the concrete. For practical use, the replacement ratio 10% is therefore suggested. From the microstructure observation by SEM, the late-age concrete microstructures are all denser than their corresponding early-age concrete microstructures. At the late age (56days), the concrete microstructure has fewer holes, more plane structures, more C-S-H particles, and fewer cracks.

Topic Category 工學院 > 土木工程學系所
工程學 > 土木與建築工程
Reference
  1. 9.Hillerborg, A., “The Theoretical Basis of a Method to Determine the Fracture Energy GF of Concrete,” Materials and Structures, Vol.18, pp.291-296, 1985.
    連結:
  2. 10.P. E. Petersson, “Fracture Energy of Concrete: Practical Performance and Experimental Results,” Cement and Concrete Research, Vol. 10, 1980, pp. 91-101.
    連結:
  3. 11.RELIM Committee on Fracture Mechanics of Concrete – Test Methods, “Determination of the Fracture Parameters (KSIC and CTODC) of Plain Concrete Using Three-Point Bend Tests,” Materials and Structures, Vol. 23, 1990, pp. 457-460.
    連結:
  4. 12.Swartz, S.E., and Yap, S.T., “The influence of dead load on fracture energy measurements using the RILEM method,” Materials and Structures, Vol.21, pp.410-415, 1988.
    連結:
  5. 16.Kim J. K.,Ham S. H.,Park Y. D.,and Noh J. H.,“Material Properties of Self-Flowing Concrete ”,Journal of Materials in Civil Engineering, pp244~249,1998.
    連結:
  6. 24.Lesile,K.E.;Rajagopalan,K.S.;and Everard,N.J., ”Flexural Behavior of High Strength Concrete Beam” , ACI Journal, Sept, V.73, No.9, 1976, pp.517-521.
    連結:
  7. 28.E. Rossouw, J. Kruger, “Review of specifications for additions for use in concrete”, Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-79, Vol. 1, pp. 201~220, Amer. Concr. Ins., Detroit, USA(1983).
    連結:
  8. 29.V. R. Sturrup, R. D. Hooton, T. G. Glenddnning,“Durability of fly ash concrete”,Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-79, Vol.1, pp 71-86,Amer.
    連結:
  9. 30.H. Onga, S. Nagatak,“Effect of ash on alkali-aggregate reaction in marine environment”,Fly Ash, Silica Fume, Slag and other Mineral By-products in Concrete, ACI SP-132, Vol.1,pp. 577~590, Amer. Concr. Ins., Detroit,USA(1992).
    連結:
  10. 32.S. Daimond,“Intimate association of coal particles and inorganic spheres in fly ash”,Cement Concrete Research, Vol.12, pp. 4005~407(1982).
    連結:
  11. 36.Keck, Roy H. and Riggs, Eugene H., “Specifying Fly ash for Durable Concrete , ” Concrete International, Vol. 19 , No. 4, April., pp35-38,
    連結:
  12. 39.Griffith, A.A., “The Phenomena of Rupture and Flow in Solids,” Phil. Trans.Roy.Soe.,A221,pp.163,1921.
    連結:
  13. 43.David Broek, “Elementary engineering fracture mnechanics,” Noordhoff international Pub. Leyden, 1974.
    連結:
  14. 44.HillerBorg, A., Modwwr, M., and Petersson, P. E.,“Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement and Concrete Research, Vol.6, pp.773-782, 1976.
    連結:
  15. 46.Shah, S.P., and Jenq,Y.S.,“Determination of fracture parameters (KIC and CTODC) of plain concrete using three-point bend tests,”Final Report of RILEM Committee 89-FMT Fracture Mechanics of Concrete : Test Method,1988.
    連結:
  16. 47.Hillerborg, A., “The Theoretical Basis of a Method to Determine the Fracture Energy GF of Concrete,” Materials and Structures, Vol.18, pp.291-296, 1985.
    連結:
  17. 48.Swartz, S.E., and Yap, S.T., “The influence of dead load on fracture energy measurements using the RILEM method,” Materials and Structures, Vol.21, pp.410-415, 1988
    連結:
  18. 49.Shah, S.P., and Jenq,Y.S.,“Determination of fracture parameters (KIC and CTODC) of plain concrete using three-point bend tests,”Final Report of RILEM Committee 89-FMT Fracture Mechanics of Concrete : Test Method,1988.
    連結:
  19. 1.Ramachandran, V.S., V.M. Malhotra,C. Jolicoeur,and N. Spiratos,“Superplasticizers: Properties and Applications in Concerete,”CANMET, 1998.
  20. 2.Mehta, P. K. and P. J. M. Monteriro“Concrete Structure,Properties, and Materials”Prentice-Hall,Second Edition,1993.
  21. 3.Feraris, C. F. and C. L. Lobo,“Processing og HPC,”Concrete International,pp.61-64,April 1998.
  22. 4.Mailer, Y. ,“High-Performance Concrete,from material to structure,”E & FN SPON , 1994
  23. 5.Metha, P. K. ,“Advancements in Concrete Technology,”Concrete International,pp.69-76,June 1999.
  24. 6.顏聰、陳冠宏、張朝順、吳秋濃,2002.07, 「以飛灰取代水泥對高強度高性能混凝土質流性質之影響」,新世紀海峽兩岸高性能混凝土研究與應用學術會議論文集,上海同濟大學,pp. 37-42。
  25. 7.廖東昇,「飛灰與強塑劑對高性能混凝土工程性質影響之研究」,國立臺灣科技大學 營建工程所博士論文,2005年。
  26. 8.黃乃明,「不同礦物摻料對高性能混凝土性質影響之研究」,國立台北科技大學土木與防災技術研究所碩士論文,2003年。
  27. 13.苗伯霖,「新型高性能超高強建築材料-活性粉混凝土」,營建知訊,第162 期,第52-60 頁(1996)。
  28. 14.沈進發,“混凝土品質控制”,第十版 pp.63,1993.
  29. 15.張大鵬,“使用強塑劑之考量”,混凝土施工自動化,台灣營建研究院,1998.
  30. 17.Zia, P., Leming, M. L. and Ahmad, S. H.,“High-Performance Concrete,”A State-of-the-Art Report, Report no. SHRP-C/FR-91-103, Srrategic Highway Research Program, National Research Council, Washington, D. C. 1991.
  31. 18.黃兆龍,“HPC使用於高雄東帝士85層高樓整合規劃”,高性能混凝土研討會,1993 12月 。
  32. 19.陳振川,“高性能混凝土之定義與特性”,結構工程,第9卷,第一期,pp.5-6,1994 3月 。
  33. 20.Russell, H. G.,“ACI Defines High-Performance Concrete,”Concrete International,pp.56-57,February 1999.
  34. 21.黃兆龍,李隆盛,”高性能混凝土力學性質分析”,高性能混凝土研討會論文集,第1-1至1-24頁,民國八十八年九月。
  35. 22.廖正彥,”高飛灰與爐石含量對混凝土之力學性質的影響”,碩士論文,國立中興大學土木工程研究所,民國八十六年。
  36. 23.Mindess,S.; and Young,J.F.,”Concrete”,Prentice-Hall,N.J.1981.
  37. 25.Discussion By Ghosh,S.K.; Chandrasekhar,C.S.; Mahmood,K.;Wang,F; Shah,S.P.;and Naanian ,A.E., ” Flexural Behavior of High-Strength Concrete Beams”,ACI Journal,March 1977,pp.140-145.
  38. 26.Wang,P.T.;Shah,S.P.;and Naanian,A.E.,”High Strength Concrete in Ultimate Strength Design”,ASCE,V.104 ST11,1978,pp.1761-1773.
  39. 27.黃兆龍,混凝土性質與行為,詹氏書局,台北市(1999).
  40. 31.林平全,「飛灰混凝土」, 科技圖書股份有限公司,民國78 年。
  41. 33.R. O. Lane,“Effect of Fly Ash on Freshly Mixed Concrete”,Concrete International, October, pp.50~52,1983.
  42. 34.顏聰,陳冠宏,張朝順,吳秋濃,2002.07, 「以飛灰取代水泥對高強度高性能混凝土質流性質之影響」,新世紀海峽兩岸高性能混凝土研究與應用學術會議論文集,上海同濟大學,pp. 37-42。
  43. 35.林平全, “飛灰混凝土” , 科技圖書股份有限公司, 第四版, pp.45~53, 84 年12 月。
  44. 37.P. J. Tikalsky and R. L. Carrasquillo , “Influence of Fly Ash on the Sulfate Resistance of Concrete ” , ACI Structural Journal , Vol.89, No.1, pp.69~75, 1992.
  45. 38.陳文華、丁鯤,「破裂延伸判據之探討」,工業技術,第93 期,第9-15頁(1982)。
  46. 40.Irwin, G. R., “Analysis of Stress and Strain Near the End of Crack Traversing a Plate, ” J. Appel. Mechs., Vol.24,pp.361-364,1957.
  47. 41.Irwin, G. R.,“Fracture, Encyclopaedic of Physicics, ” Fluge, Springer. Verlug, pp.551-589, 1958.
  48. 42.Melvin, F. K., and Carl, H. P.,“Advanced Fracture Mechanics,” Oxford University Press, New York, 1985.
  49. 45.Shah, S.P., Swartz, E.S., and Ouyang, C., “Fracture Mechanics of Concrete,” 1sted., John Wiley & sons, Inc., 1995.
Times Cited
  1. 沈錦鴻(2013)。應用類神經網路配合ACI規範輔助卜作嵐混凝土配比設計。交通大學土木工程系所學位論文。2013。1-137。 
  2. 馬丹尼(2012)。爐石與飛灰添加於混凝土之性能探討及強度預測。臺灣大學土木工程學研究所學位論文。2012。1-121。 
  3. 林佳瑤(2011)。利用層次分析法於評估燃煤電廠飛灰資源再利用產品選定之研究。臺北科技大學環境工程與管理研究所學位論文。2011。1-186。