Title

河川表面流速與流量非接觸式量測方法之發展及應用

Translated Titles

Development of Non-contact Methods for Water Surface Velocity and River Discharge Measurements

Authors

李明靜

Key Words

質點影像量測 ; 脈衝雷達 ; 遙測 ; 河川流量 ; river discharge ; remote sensing ; pulse radar ; PIV

PublicationName

成功大學水利及海洋工程學系學位論文

Volume or Term/Year and Month of Publication

2003年

Academic Degree Category

博士

Advisor

呂珍謀;賴泉基

Content Language

繁體中文

Chinese Abstract

本文主要目的是應用及發展微波雷達與影像之非接觸的表面流速分佈量測技術以建立一河川流量遙測系統,此系統之發展包含三部份之研究:(一) 非接觸式之水面流速量測技術的發展;(二)水面流速與平均流速及水深關係之建立;(三)實務量測的驗證及應用,包括克服惡劣天候、洪水流及全天候量測等問題。 影像流速量測的發展在小尺度的實驗室中已發展多年,但大尺度的量測應用卻很少。本研究以相關法及FFT計算為工具,建立大尺度河川水面流速影像量測技術,並分別以模擬流場、實驗渠道、電廠進水渠道量測加以驗證,其與實測數據差異均小於8 %。至於微波雷達之流速分佈量測系統,則以脈衝雷達為工具,依據水面雷達回波的布拉格效應與都卜勒頻移,獲得水面向雷達流速後,配合本文之流向解析法,使其可在5-10分鐘內利用單一雷達量測水面的流速分布。經由在曾文溪及基隆河的測試,並與流速計比對驗證結果顯示,其相對差異可小於3 %。 假設河川於紊流流況下,垂向流速分布為對數律與冪次律型態,若將河川橫斷面視為若干矩形分區所組成,則依據該分區所測得之水面流速與粗糙長度,可推得該區表面流速與平均流速及水深,乃可求得分區流量再累加得斷面流量。粗糙長度主要影響因子為底床粒徑、河床形狀(沙坡或植生)及底床載傳輸運動的型態,除礫石河川中可依據底床粒徑推估外,一般河川很難直接量測,本文建議可利用既往之流速、水深等資料,建立粗糙長度在橫斷面上分布供水深推估時使用。此外,若河道可視為定床則可根據以往斷面資料,直接利用水位的量測計算水深。 依本法所建立的河川流量遙測系統,分別於高屏攔河堰及基隆河瑞芳、五堵等處,作驗證量測獲得良好結果,尤其是高屏攔河堰與基隆河五堵處颱洪期流量歷程的測量結果,更顯示此遙測系統不受天候、洪水流影響,可近乎即時測量流量,預期日後可以此為基礎建立資訊時代之河川流量遙測系統。

English Abstract

This study develops a non-contact method for measuring surface velocity and discharge in a river. Three major developments: (1) developing the remote sensing schemes for surface velocities detecting; (2) establishing the relation between the surface velocity and the discharge in a river; and (3) verification the discharge estimation technique; have been completed during this study. To obtain the surface velocity distribution, both Particle Image Velocimetry scheme (PIV) and Doppler radar system have been developed and applied. The present PIV scheme uses the FFT-based correlation algorithm and has been verified through three studies. These are: simulate flow, the flow through contract channel in laboratory, and the flow through tunnel-intake channel in field. The Doppler radar system is based on an X-band pulse radar(9.36GHz) which can scan the lateral distribution of surface velocity across a river section in 5-10 minutes, according to Bragg scattering from short waves produced by turbulent boils on the surface of the river. This measuring technique has also been verified in Tsengwen River and Keelung River. Surface velocity measurements, obtained using the radar and the current meter, the float method, and the PIV scheme, were closely compared, and the differences were within 8 %. The remote sensing technique is proven to be very effective and versatile. It is assumed that the vertical velocity distribution follows the universal law as the power-law and the logarithmic law in a highly turbulent river. If a river cross-section is divided into several rectangular sub-sections. Each of these sub-sections has measured surface velocity and pre-determined bed roughness. Then the mean velocity and depth of each sub-section can be estimated from the surface velocity and roughness length through the universal formula. Multiple mean velocity and depth of each sub-section and sum them to obtain the cross-sectional river discharge. The above methods of measurement have been successfully applied to measure floods at the Kaoping Weir and Keelung River for four typhoon events. This implies that the present development has practical ability as a fully automatic remote sensing system for river flow measurement.

Topic Category 工學院 > 水利及海洋工程學系
工程學 > 水利工程
Reference
  1. 1. Adler, M. and U. Nicodemus (2001), “A new Computer model for the Evaluation of data from Acoustic Doppler Current Profilers,” Phys. Chem. Earth (C), Vol. 26, No. 10-12, pp. 711-715.
    連結:
  2. 2. Adrian, R. J. (1991), “Particle-imaging techniques for experimental fluid mechanics,” Ann. Rev. Fluid Mech., 23, pp. 261-204.
    連結:
  3. 3. Barrick, D. E. (1972), “First-order Theory and Analysis of MF/HF/VHF Scatter from the Sea,” IEEE Trans. Antennas Propag., AP-20, pp. 2-10.
    連結:
  4. 4. Barrick, D. E., M. W. Evans and B. L. Weber (1977), “Ocean Surface Currents mapped by Radar,” Science, Vol.198, pp. 138-144.
    連結:
  5. 5. Bass, F. G., I. M. Fuks, A. I. Kalmykov, I. E. Ostrovsky, and A. D. Rosenberg (1968), “Very High Radiowave Scattering by a Disturbed Sea Surface, II, Scattering from an actual sea surface,” IEEE Trans. Antennas Propag., AP-16, pp. 560-568.
    連結:
  6. 6. Blasius, H. (1913), “Das Ähnlichkeitsgestz bei Reibungsvorgängen in Flüssigkeiten,” Forschungsheft des vereins deutscher Ingenieure, No. 131, Berlin, Germany. (in German)
    連結:
  7. 8. Bray, D. I. (1979), “Estimating average Velocity in Gravel-bed Rivers,” J. Hydr. Div., ASCE, Vol. 105, No. 9, pp. 1103-1122.
    連結:
  8. 10. Broche, P., M. Crochet, J. C. Demaistre, J. L. Devevon, and P. Forget (1987), “VHF Radar for Ocean Surface Current and Sea state Remote Sensing,” Radio Sci., Vol. 22, pp. 69-75.
    連結:
  9. 11. Cardoso, A. H., W. H. Graf, and G. Gust (1989), “Uniform Flow in a Smooth Open Channel,” J. Hydraul. Res., Vol. 27, No. 5, pp. 603-616.
    連結:
  10. 13. Cebeci, T. and A. M. O. Smith (1974), “Analysis of turbulent boundary layers,” Chapter 6, Academic Press.
    連結:
  11. 14. Charlton, F. G., P. M. Brown, and R. W. Benson (1978), “The Hydraulic Geometry of some Gravel Rivers in Britain,” Rept. IT 180, Hydr. Res. Station, Wallingford, England.
    連結:
  12. 16. Chen, C. L. (1991), “Unified theory on Power law for Flow resistance,” J. Hydraul. Eng., Vol. 117, No. 3., pp. 371-389.
    連結:
  13. 17. Chen, C. L. (1992), “Momentum and Energy coefficient based on Power-law Velocity Profile,” J. Hydraul. Eng., Vol. 118, No.11, pp. 1571-1583.
    連結:
  14. 18. Chiu, C. L. (1987), “Entropy and 2-D Velocity distribution in Open Channel,” J. Hydraul. Eng., Vol. 114, No. 7, pp. 738-755.
    連結:
  15. 19. Chiu, C. L., and C. A. Said (1995), “Maximum and Mean Velocity and Entropy in Open-Channel Flow,” J. Hydraul. Eng., Vol. 121, No. 1, pp. 26-35.
    連結:
  16. 21. Chow, V. T. (1964), “Handbook of Applied Hydrology”, McGraw-Hill Book Co., Inc. New York.
    連結:
  17. 22. Coles, D. (1956), “The law of wake in the Turbulent Boundary Layer,” Journal of Fluid Mech., No. 1., pp. 191-226.
    連結:
  18. 23. Coleman, N. L. (1981), “Velocity Profiles with Suspended Sediment,” J. Hydraul. Res., Vol. 19, No. 3, pp. 211-229.
    連結:
  19. 24. Coleman, N. L. and C. V. Alonso (1983), “Two-dimensional Channel Flows over Rough Surface,” J. Hydraul. Eng., Vol. 109, No. 2, pp. 175-188.
    連結:
  20. 25. Costa, J. E., K. R. Spicer, R. T. Cheng, F. P. Haeni, N. B. Melcher, E. M. Thurman, W. J. Plant, and W. C. Keller (2000), “Measuring Stream Discharge by Non-contact Methods: A Proof-of-concept Experiment.” Geophy. Res. Let., Vol. 27, No. 4, pp. 553-556.
    連結:
  21. 26. Crombie, D. D. (1955), “Doppler Spectrum of Sea Echo at 13.56 Mc/s,” Nature, Vol. 175, pp. 681-682.
    連結:
  22. 27. Dabiri, D., M. Gharib (1991), “Digital Particle Image thermometry: The method and implementation,” Exp. Fluids 11, pp.77-86.
    連結:
  23. 28. Darby, Stephen E. and C. R. Thorne (1996), “Predicting Stage-Discharge curves in Channels with Bank Vegetation,” J. Hydraul. Eng., Vol. 122, No. 10, pp. 583-586.
    連結:
  24. 32. Engelund, F. and E. Hansen (1972), “A Monograph on Sediment Transport in Alluvial Streams,”Teknisk Forlag, Copenhagen, p.62.
    連結:
  25. 33. Estournel, C., P. Broche, P. Marsalex, J.-L. Devenon, F. Auclair and R. Vehil (2001), “The Rhone river plume in unsteady condition: Numerical and Experimental Results,” Estuarine, Coastal and Shelf Science Vol. 53, pp. 25-38.
    連結:
  26. 35. Ferro, V. and G. Baiamonte (1994), “Flow Velocity Profiles in Gravel-Bed Rivers,” J. Hydraul. Eng., Vol. 120, No. 1, pp. 60-80.
    連結:
  27. 36. Fujita, I., M. Muste, and A. Kruger (1998), “Large-Scale Particle Image Velocimetry for Flow analysis in Hydraulic Engineering Applications”, J. Hydraul. Res., Vol. 36, NO. 3, pp. 397-414.
    連結:
  28. 37. Fukuoka, S., K. Fujita, and T. Araki (1988), “Improvement of Aerial Survey Technique for Analysis of Flood Flow,” Proc. 32nd Japanese Conference on Hydraulics, pp. 341-346. (in Japanese)
    連結:
  29. 38. Fukuoka, S., A. Takahashi, K. Fujita, A. Watanabe, K. Hirabayashi, A. Sakano, K. Morita, H. Kagaya, M. Hayashi, and K. Hasegawa (1989), “Prediction of Flood Flow Profiles in River Course with Luxuriant Vegetations,” Proc. 33rd Japanese Conference on Hydraulics, pp. 295-300. (in Japanese)
    連結:
  30. 40. Gibbings, J. C. (1996), “On the measurement of Skin Friction from the Turbulent Velocity Profile,” Flow. Meas. Instrum., Vol. 7, No.2, pp. 99-107.
    連結:
  31. 41. Gordon, R. L. (1989), “Acoustic measurement of River discharge,” J. Hydrau Eng., Vol. 115, No. 7, pp. 925-936.
    連結:
  32. 43. Gui, L., J. Longo, and F. Stern (2001), “Biases of PIV measurement of Turbulent Flow and the masked Correlation-based Interrogation Algorithm”, Exp. Fluids 30, pp. 27-35.
    連結:
  33. 44. Hickey, K. J., E. W. Gill, J. A. Helbig, and J. Walshb (1994), “Measurement of Ocean Surface Currents using a Long-range, High-Frequency Ground Wave Radar,” IEEE J. Oceanic Eng., Vol. 19, pp. 549-554.
    連結:
  34. 45. Hirsa, A. H., M. J. Vogel, and J. D. Gayton (2001), “Digital Particle Velocimetry Technique for Free-surface Boundary Layer measurement: Application to Vortex Pair Interactions”, Exp. Fluids 31, pp. 127-139.
    連結:
  35. 46. Hornung, H. G., T. C. Willert, and S. Turner (1995), “The Flow-field downstream of a Hydraulic Jump,” J. Fluid Mech., Vol. 287, pp. 299-316.
    連結:
  36. 48. Huang, H, D. Dabari, and M. Gharib (1997), “On errors of Digital Particle Image Velocimetry,” Meas. Sci. Technol. 8, pp. 1427-1440.
    連結:
  37. 49. Huang, H, H. Fiedler, and J. Wang (1993), “Limitation and Improvement of PIV. II. Particle Image Distortion, a novel technique,” Exp. Fluids 15, pp. 263-273.
    連結:
  38. 51. Keshavarzy, A. and J. E. Ball (2000), “An application of Image Processing in the Study of Sediment,” J. Hydraul. Res., Vol. 37, No. 4, pp. 559-577.
    連結:
  39. 54. Kinoshita, R., T. Utami, and T. Ueno (1990), “Image Processing Aerial Photographs of Flood Flow,” Photo surv. remote sens., Vol. 29, No. 6, pp. 4-17..
    連結:
  40. 55. Kinoshita, R., T. Utami, and T. Ueno (1992), “ Flood Analysis by the Picture Processing of Aerial Photographs – on the Parallel Cycloidal Flow in the Agano River,” Pro Hydraul. Eng., Vol. 36, pp. 181-186.
    連結:
  41. 56. Kouwen, N. (1988) ‘‘Field Estimation of the Biomechanical Properties of Grass,” J. Hydraul. Res., Vol. 26, No. 5, pp. 559-568.
    連結:
  42. 57. Kouwen, N. and M. F. Moghadam (2000), “Friction Factors for Coniferous trees Along Rivers,” J. Hydraul. Eng., Vol. 126, No. 10, pp. 732-740.
    連結:
  43. 58. Kurada, S., G. W. Rankin, and K. Sridhar (1997), “A new Particle Image Velocimetry Technique for Three-Dimensional Flows,” Opt. Lasers Eng., 28, pp. 343-376.
    連結:
  44. 59. Lacey, G. (1935), “Uniform Flow in alluvial Rivers and Canals,” Minutes of Proc. Instn. Civ. Engrs., 237, pp. 421-453.
    連結:
  45. 60. Lee, M.-C., C.-J. Lai, J.-M. Leu, W.J. Plant, W.C. Keller, and K. Hayes (2002), “Non-contact Flood Discharge measurements using an X-band Pulse Radar (I) Theory,” Flow. Meas. Instrum., Vol. 13/5-6, pp. 265-270.
    連結:
  46. 61. Lee, M.-C., J.-M. Leu, C.-J. Lai, W. J. Plant, W. C. Keller, and K. Hayes (2002), “Non-contact Flood Discharge measurements using an X-band Pulse Radar (II) Improvements and Applications,” Flow. Meas. Instrum., Vol. 13/5-6, pp. 271-276.
    連結:
  47. 64. Limerinos, J. T. (1970), “Determination of the Manning Coefficient for measured Bed Roughness in Natural Channels,” Water Supply Paper, 1898-B. US Geol. Surv., Washington DC.
    連結:
  48. 65. Lloyd, P. M., D. J. Ball, and P. K. Stansby (1995), “Unsteady Surface-Velocity Field measurement using Particle Tracking Velocimetry,” J. Hydraul. Res., Vol. 33, No. 4, pp. 519-534.
    連結:
  49. 69. Moody, J. A. and B. M. Troutman (1992), “Evaluation of the depth-integration method of measuring water discharge in large river,” J. Hydrol., 135, pp. 201-236.
    連結:
  50. 73. Nezu, I. and H. Nakagawa (1995), “Turbulence measurements in Unsteady Free Surface Flows,” Flow. Meas. Instrum., Vol. 6, No. 1, pp. 49-59.
    連結:
  51. 74. Nezu, I., and W. Rodi (1986),“Open-Channel Flow measurement with a Laser Doppler Anemometer,”J. Hydraul. Eng., Vol. 112, No. 5, pp. 335-355.
    連結:
  52. 75. Nikuradse, J. (1932),“Gestzmassigkeiten der turbulenten Stromung in glatten Rohren,”Ver. Deut. Ing. , Forschungsheft 356.
    連結:
  53. 76. Peters, N. J. and R. A. Skop (1997), “Measurements of Ocean Surface Current from a Moving Ship Using VHF Radar,” J. Atmos. Ocean. Technol., Vol.14, pp. 676-694.
    連結:
  54. 77. Plant, W. J. (1987),“The Microwave measurement of Ocean-wave directional Spectra,”Johns Hopkins APL Technical Digest, Vol. 8, No. 1.
    連結:
  55. 78. Plant, W. J. and W. C. Keller (1990),“Evidence of Bragg Scattering in Microwave Doppler Spectra of Sea return,”J. Geophys. Res., Vol. 95, No. C9, pp. 16,299-16,310.
    連結:
  56. 79. Plant, W. J. (1997), “A model for Microwave Doppler Sea return at High incidence Angles: Bragg Scattering from Bound tilted Waves,” J. Geophys. Res., 102/C9, pp. 21131-21146.
    連結:
  57. 80. Plant, W. J, W. C. Keller, K. Hayes, and K. Spicer (2003), “Streamfloe Properties from Surface Velocity, Stage, and Depth,” (Preparing)
    連結:
  58. 81. Prandle, D. (1987), “The Fine-Structure of Near-shore Tidal and Residual Circulations Revealed by HF Radar Surface Current measurements,” J. Phys. Oceanogr., Vol. 17, pp. 231-245.
    連結:
  59. 82. Prandtl, L. (1925), “Bericht Uber Untersuchungen Zur Aubgebildeten Turbulenz,” Z. Angew. Math. Mech., Vol. 5, No. 2, p. 136.
    連結:
  60. 84. Sarma, K. V. N., P. Lakshminarayana, and N. S. L. Rao (1983), “Velocity distribution in smooth rectangular open channels,” J. Hydraul. Eng., Vol. 109, No. 2, pp. 271-289.
    連結:
  61. 86. Schott, F., A. S. Frisch, K. Leaman, G. Samuels, and I. P. Fotiro (1985), “High-frequency Doppler Radar measurement of Florida Current in Summer 1983,” J. Geophys. Res., Vol. 90, pp. 9006-9016.
    連結:
  62. 87. Schultz, G. A. (1996), “Remote Sensing Application to Hydrology: Runoff,” Hydrol. Sci. J., 41, pp. 453-475.
    連結:
  63. 88. Shay, L.K., H. C. Graber, D. B. Ross, and R. D. Chapman (1995), “Mesoscale Ocean Surface Current Structure Detected by High-Frequency Radar,” J. Atmos. Ocean. Technol., Vol. 14, pp. 881-900.
    連結:
  64. 89. Shields, A. (1936), “Anwendung der Aechlichkeits-Mechanik und der Turbulenzforschung auf die Geschiebewegung,” Mitt. Preussische Versuchsanstalt für Wasserbau und Schiffbau, Berlin. (in German)
    連結:
  65. 93. Song, T., W. H. Graf and U. Lemmin (1994), “Uniform Flow in Open Channels with Movable Gravel bed,” J. Hydraul. Res., Vol. 32, No. 6, pp. 861-876.
    連結:
  66. 94. Song, T. and W. H. Graf (1996), “Velocity and Turbulence distribution in Unsteady Open-Channel Flows,” J. Hydraul. Eng., Vol. 122, No. 3, pp. 141-155.
    連結:
  67. 95. Spicer, K. R., J. E. Costa, and G. Placzek (1997), “Measuring Flood Discharge in Unstable Stream Channels using Ground-Penetrating Radar,” Geology, 25, pp. 423-426.
    連結:
  68. 97. Stevens, C. and M. Coates (1994), “Applications of a Maximized Cross -correlation Technique for resolving Velocity Fields in Laboratory Experiments,” J. Hydraul. Res., Vol. 32, No. 2, pp. 195-212.
    連結:
  69. 98. Stewart, R. H. and J. W. Joy (1974), “HF Radio measurement of Surface Current,” Deep-Sea Research, Vol. 21, pp. 1039-1049.
    連結:
  70. 100. Toni, S. (1999), “Digital Photogrammetry”, Volume I, TerraScience.
    連結:
  71. 102. Utami, T. and R. E. Blackwelder (1991), “A Cross-correlation Technique for Velocity Field extraction from Particulate Visualization”, Exp. Fluids 10, pp. 213-223.
    連結:
  72. 103. Van Driest, E. R. (1956), “On Turbulent Flow near a Wall,” J. Aero. Sci., Vol. 23, pp. 1007 -1011.
    連結:
  73. 104. Wang, X. K., Z. Y. Wang, M. Z. Yu, and D. Li (2001), “Velocity Profile of Sediment Suspensions and Comparison of Log-law and Wake-law,” J. Hydraul. Res, Vol. 39, No. 3, pp. 211-217.
    連結:
  74. 105. Weitbrecht, V., G. Kühn, and G. H. Jirka (2002), “Large Scale PIV- measurement at the Surface of Shallow Flows,” Flow. Meas. Instrum. 13, pp. 237-245.
    連結:
  75. 106. Wereley, S. T. and L. Gui (2003), “Correlation-based Central Difference Image Correction (CDIC) method and application in a Four-roll mill Flow PIV measurement,” Exp. Fluids 34, pp. 42-51.
    連結:
  76. 107. Westerweel, J., D. Dabiri, and M. Gharib (1997), “The Effect of Discrete windows offset on the Accuracy of Cross-correlation Analysis of Digital PIV Recording,” Exp. Fluids 23, pp. 20-28.
    連結:
  77. 108. Willert, C. (1996), “The Fully Digital Evaluation of Photographic PIV Recordings,” Appl. Sci. Res. 56, pp. 79-102.
    連結:
  78. 109. Willert, C. E. and M. Gharib (1991), “Digital Particle Image Velocimetry”, Exp. Fluids 10, pp. 181-193.
    連結:
  79. 111. Wohl, E. E. (1998), “Uncertainty in Flood Estimates associated with Roughness Coefficient,” J. Hydraul. Eng., Vol. 124, No. 2, pp. 219-223.
    連結:
  80. 112. Wozniak, K., G. Wozniak, and T. Rösgen (1990), ”Particle Image Velocimetry applied to Thermo-capillary Convection”, Exp. Fluids 10, pp. 12-16.
    連結:
  81. 113. Wright, J. W. and W. C. Keller (1971), “Doppler Spectra in Microwave Scattering from Wind Waves”, Phys. Fluid, 14, pp. 466-473.
    連結:
  82. 114. Wright, J. W. (1966), “Backscattering from Capillary Waves with application to Sea Clutter,” IEEE Trans. Antennas Propag., AP-14, pp. 749-754.
    連結:
  83. 115. Xia R. (1997), “Relation between Mean and Maximum velocities in a natural River”, J.Hydr. Engrg. ASCE, Vol. 123, No. 8, pp. 720-723.
    連結:
  84. 116. Xu, J. P. and L. D. Wright (1995), “Tests of bed Roughness models using Field data from the Middle Atlantic Bight, ” Continental Shelf Research, 15, pp. 1409-1434.
    連結:
  85. 118. Yamaguchi, T. and K. Niizato (1994),“Flood Discharge Observation using Radio Current meter,”Doboku Gakkai Rombun-Hokokushu/ Proc. of JSCE, No. 497 pp. 41-50.
    連結:
  86. 120. Yorke, T. H. and K. A. Oberg (2002), “Measurement River Velocity and Discharge with Acoustic Dopple Profilers,” Flow. Meas. Instrum., Vol. 13, pp. 191-195.
    連結:
  87. 121. Zhan, Y. W. (1986), “Optical measurement of Velocity and Acceleration with Color Coding,” Opt. Lasers, 18, pp. 255-258.
    連結:
  88. 122. Zippe, H. J. and W. L. Graf (1983), “Turbulent Boundary layer Flow over Permeable and Non-permeable Rough Surface,” J. Hydraul. Res., Vol. 21, No. 1., pp. 51-65.
    連結:
  89. 130. 馬志欽 (1962),「雷達原理」,交通部交通研究所。
    連結:
  90. 131. 盧召堯 (1997),「台灣河川流量觀測技術之開發與應用」,國立中興大學土木工程學系,台灣省水利處。
    連結:
  91. 7. Bompais, X., M. L. Boulluec, F. Dekindt, S. Marin, B. Molin (1994)“Slow-drift motion: Practical Estimation of Mooring line Damping”, OMAE Vol. I, Offshore Technology ASME.
  92. 9. Bray, D. I. (1982), “Flow resistance in Gravel-bed Rivers,” In Gravel-Bed Rivers, pp. 109-133, Hey, R. D., Bathurst, J. C., and C. R. Thorne (Eds.). John Wiley and Sons, Chichester, England.
  93. 12. Carr, J. J. (1994), “Practical Antenna Handbook,” TAB Books, Blue Ridge Summit, PA.
  94. 15. Chen, C. L. (1989), “Power law of flow resistance in open channels: Manning’s formula revisited,” Proc. Int. Conf. on Channel Flow and Catchment Runoff: Centennial of Manning’s Formula and Kuichling’s Rational Formula, ASCE et al., pp.817-848.
  95. 20. Chow, V. T. (1959), “Open Channel Hydraulic,” McGraw-Hill Book Co., Inc. New York.
  96. 29. Einstein, H. A. (1950), “The Bed-load function for Sediment Transportation in Open Channel Flows,” USDA, Soil Conservation Service, Technical Bulletin, No. 1026, pp. 1-71.
  97. 30. Einstein, H. A. and N. Barbarossa (1952), “River Channel Roughness,” Trans. ASCE, Vol. 117, pp. 1121-1146.
  98. 31. Engelund, F. (1966), “Hydraulic resistance of alluvial,” Proc. of ASCE, Vol. 92, No. HY2, pp. 315-326.
  99. 34. Falkner, E. (2002), “Aerial mapping- Method and Application,” Lewis publishers.
  100. 39. Geernaert, G. L. and W. J. Plant (1990), “Surface Waves and Fluxes: Current Theory and Remote Sensing,” Kluwer Academic Publishers.
  101. 42. Griffiths, G. A., (1981), “Flow Resistance in Coarse Gravel-bed Rivers,” J. Hydr. Div., ASCE, Vol. 107, No. 7, pp. 899-918.
  102. 47. Hovanessian, S. A. (1984), “Radar System Design and Analysis,” Artech house, Inc.
  103. 50. Kellerhals, R. (1967), “Stable Channels with Gravel-Paved Beds,” Proc. of ASCE, Vol. 93, No. WW1, pp. 63-84.
  104. 52. Keulegan, G.H., (1938), “Laws of Turbulent Flow in Open Channels,” Research Paper RP1151, J. Res. U.S. National Bureau of Standards, Vol. 21, pp. 707-741.
  105. 53. Kinoshita, R. (1991), “航空寫真による洪水流解析の現狀と今後の課題” Proc. of JSCE, No. 345, pp. 1-19. (in Japanese)
  106. 62. Leopold, L, B., M. G. Wolman, and J. P. Miller (1964), “Fluvial Processes in Geomorphology,” W. H. Freeman, San Francisco, California.
  107. 63. Leu, J.-M., M.-C. Lee, C.-J. Lai, W. J. Plant, W. C. Keller, and K. Hayes (2001), “Development of Remote Sensing Technique for River Flow measurement”, Proceedings of the 3rd International Symposium on Environmental Hydraulics.
  108. 66. Manning, R. (1895), “Supplement to on the flow of water in open channels and pipes,” Trans., Institution of Civil Engineers of Ireland, 24, pp. 179-207.
  109. 67. Meyer-Peter, E. and R. Muller (1948),“Formulas for Bed Load Transport,”Proc. 3rd IAHR Meeting, Stockholm, pp. 39-64.
  110. 68. Millar, R. G. (1999), “Grain and From Resistance in Gravel-bed Rivers,” J. Hydraul. Res., Vol. 37, No. 3, pp. 303-312.
  111. 70. Nadai, A., K. Hiroshi, M. Masafumi, and S. Shinichi (1999), “Measurement of Ocean Surface Currents by the CRL HF Ocean Surface Radar of FMCW type. Part2. Current Vector,” J. oceanogr., Vol. 55, pp. 13-30.
  112. 71. Nathanson, F. E., J. P. Reilly, and M. N. Cohen (1991), “Radar Design Principles -Signal Processing and Environment,” McGraw-Hill, Inc.
  113. 72. Nezu, I. and H. Nakagawa (1993), “Turbulence in open channel Flows,” IAHR Monograph Series, A. A. Balkema Publishers, Rotterdam, Netherlands.
  114. 83. Riggs, H. C. (1973), “Method of measuring and Computing Flood Discharges,” IAHR, International Symposium on River Mechanics, pp. B2-1-10, Bangkok, Thailand.
  115. 85. Simons, D. B. and E. V. Richardson (1966), “Resistance to Flow in Alluvial Channels,”, Prof. Paper 422-J, US Geol. Surv..
  116. 90. Simpson, M. R. and R. N. Oltmann (1993), “Discharge-measurement system using an Acoustic Doppler Current Profiler with applications to large Rivers and Estuaries,” US Geol. Surv. Water-Supply Paper 2395, 32 pp.
  117. 91. Smith, W. (1971), “Techniques and Equipment required for Precise Stream Gaging in Tide-affected Fresh-water reaches of the Sacramento River, California,” U.S. Geol. Surv. Water-Supply Paper 1869-G, 46 pp.
  118. 92. Smoot, G. F. and C. E. Novak (1969), “Measurement of Discharge by the Moving-boat method,” US Geol. Surv. Techniques of Water-Resources Invest. , Book 3, pp. 22.
  119. 96. Steffler, P. M., N. Rajaratnam, and A. W. Peterson (1985), “LDA Measurements in Open Channels”, Proc. ASCE, J. Hyd. Div., Vol. 111, No. 1, pp. 117-130.
  120. 99. Strickler, K. (1923),“Beiträge Zur Frage der Geschwindigkeitsformel und der Raukigeitszahlen Fur Strom Kanäle und Geschlossene Leitungen,”Mitteilung No. 16, des Eidenőssische Amtes fur Wasser Wirtschaft, Bern, Switzerland.
  121. 101. Tracy, H. J. and C. M. Lester (1961), “Resistance Coefficients and Velocity Distribution in Smooth Rectangular Channel,” U.S. Geol. Surv. Water-Supply Paper 1592-A, Washington, D.C..
  122. 110. Williams, G. S. and A. Hazen (1933), “Hydraulic tables,” 3rd Ed., John Wiley and Sons, Inc., New York, N. Y..
  123. 117. Yamaguchi, T. (2002), “洪水流速および流量觀測─その1─,” Journal of Japan Soc. Hydrol. & Water Resour. Vol. 15, No. 6, pp. 625-635. (in Japanese)
  124. 119. Yasuyuki, S., W. Yasuharu, and Y. Shoji (1993), “Observation of Flood and River bed Evolution,” J. Hydro-Sci. Hydraul. Eng. Special Issues, pp. 141-160.
  125. 123. Гοнчаров, B.H. (1962), “Основы личамики русловых потоков Гидрометеор иэд.,” Лениград.
  126. 124. Шамов, Г.И., (1952) “Формулы для Определения Предельной скорости и расходов донних наносов,” труды Государственного Гидрологического Инст., вып. 36.
  127. 125. 王如意、易任 (1979),「應用水文學」,國立編譯館出版。
  128. 126. 李明靜,賴泉基 (2000),「由水面流速分布推定河川斷面水深及流量之研究」,中國土木水利工程學刊,第十二卷,第四期,第777頁至783頁。
  129. 127. 李明靜、許毅然、賴泉基、呂珍謀 (2001),「河川測流自動化-水深平均流速之繩索直接量測法」,中華民國第十二屆水利工程研討會,國立成功大學,台南市,第C7-C13頁。
  130. 128. 吳時光、周源華、餘松煜 (1993),「數位影像處理」,儒林圖書公司。
  131. 129. 吳慶現、張耀澤、陳義平、蔡長泰、李鴻源(1994),「高屏溪下游攔河堰工程細部規劃」,台灣省水利局規劃總隊。
  132. 132. 賴泉基、呂珍謀、李明靜 (2001),「河川流量遙測技術的發展與應用」,經濟部水利處規劃試驗所,國立成功大學水利及海洋工程學系九十年度學術研究成果雙邊論文研討會,台南市,第35-43頁。
  133. 133. 賴泉基 (1998),「應用微波雷達系統於河道水面流速及流量之量測」,行政院國家科學委員會第三十五屆出國研究進修人員研究進修報告書,台南。
  134. 134. 賴泉基、呂珍謀、許毅然、李明靜 (2000),「高效率流量測量示範站之建置運作(1 / 2)」,行政院經濟部水利署委辦計畫計畫成果報告。
  135. 135. 賴泉基、呂珍謀、許毅然、李明靜 (2002),「高效率流量測量示範站之建置運作(2 / 2)」,行政院經濟部水利署委辦計畫計畫成果報告。
  136. 136. 賴泉基、呂珍謀、許毅然、李明靜 (2002),「基隆河系流量自動觀測技術之研發」,行政院經濟部水利署第十河川局委辦計畫計畫成果報告。
  137. 137. 賴泉基、許毅然、李明靜 (2001),「洪水期河川流量遙測方法研究(III)」,行政院國家科學委員會計畫研究成果報告,計畫編號:NSC 89-2211-E-006-169。
  138. 138. 錢寧、萬兆惠 (1991),「泥沙運動力學」,科學出版社,北京,第206-209頁。
  139. 139. 蘇藤成(1986),「台灣西部河川輸沙量推估研究─洪水期高流速情況下泥沙施測作業方法及設備改善措施」,經濟部水資源統一規劃委員會,經濟部七十五年度研究發展專題。
Times Cited
  1. 林穎志(2014)。利用複合式量測方法推估河川流量之研究。成功大學水利及海洋工程學系學位論文。2014。1-128。 
  2. 黃建霖(2013)。曾文溪水文站流速特性試驗分析。成功大學水利及海洋工程學系碩士在職專班學位論文。2013。1-134。 
  3. 王昭賢(2012)。影像分析於河川流速之應用。成功大學水利及海洋工程學系學位論文。2012。1-79。 
  4. 謝文仁(2012)。河川表面流速與平均流速之現場試驗研究-以曾文溪中下游流量站為例。成功大學水利及海洋工程學系碩士在職專班學位論文。2012。1-76。 
  5. 朱木壽(2010)。渠道高流量非接觸式量測及其準確度之研究。成功大學水利及海洋工程學系學位論文。2010。1-135。 
  6. 郭俊楨(2014)。以快速且微侵入法量測感潮河段流量。臺北科技大學工程科技研究所學位論文。2014。1-158。 
  7. 張汶璟(2008)。南勢溪攬勝橋之流量觀測方法的建立。臺北科技大學土木與防災研究所學位論文。2008。1-72。 
  8. 梁仲志(2007)。機械視覺配合雙CCD三維量測判釋土石軌跡與粒徑分佈之研究。臺北科技大學土木與防災研究所學位論文。2007。1-71。 
  9. 洪健峰(2007)。土石流影像前處理與機械視覺判釋之整合研究。臺北科技大學土木與防災研究所學位論文。2007。1-62。 
  10. 劉榮斌(2006)。機械視覺與攝影測量判讀土石流特性參數之初步研究。臺北科技大學土木與防災研究所學位論文。2006。1-116。 
  11. 楊孝忠(2006)。杜普勒流速儀在高流量觀測上之應用。臺北科技大學土木與防災研究所學位論文。2006。1-98。 
  12. 劉力維(2014)。士文橋段河床變化與流量率定曲線影響之探討。屏東科技大學土木工程系所學位論文。2014。1-58。 
  13. 石欣軒(2012)。利用表面流速量測推估矩形斷面流量之研究。臺灣大學土木工程學研究所學位論文。2012。1-69。 
  14. 陳冠儒(2009)。靜水池長度與背向穴室對自由跌水池內流況影響之試驗研究。臺灣大學生物環境系統工程學研究所學位論文。2009。1-113。 
  15. 蔡維哲(2005)。應用航空影像分析於邊坡位移場之方法學研究。臺灣大學土木工程學研究所學位論文。2005。1-158。 
  16. 何璟浩(2015)。水位影像量測技術視窗化之研究。逢甲大學水利工程與資源保育學系學位論文。2015。1-124。 
  17. 陳加樺(2004)。都卜勒微波雷達系統應用於港口流場量測之研究。成功大學水利及海洋工程學系學位論文。2004。1-72。
  18. 李明憲(2005)。應用脈衝式都卜勒微波雷達偵測近岸碎波位置。成功大學水利及海洋工程學系學位論文。2005。1-84。
  19. 柯雅卿(2005)。通用型影像量測系統應用研究。成功大學水利及海洋工程學系學位論文。2005。1-65。
  20. 蕭至中(2005)。縱向圓柱間週期性流場之影像質點量測。成功大學水利及海洋工程學系學位論文。2005。1-49。
  21. 柯秀宜(2006)。影像處理技術於土石流流速判釋之可行性研究-以神木觀測示範站為例。中興大學資訊科學與工程學系所學位論文。2006。1-50。
  22. 陳昱升(2006)。質點影像測速儀應用於魚窪地固床工流場之試驗及分析。臺灣大學生物環境系統工程學研究所學位論文。2006。1-166。
  23. 林國暉(2006)。土石流表面速度影像估算方法之研究。成功大學水利及海洋工程學系學位論文。2006。1-69。
  24. 韓坤平(2006)。數值影像處理於堤面溯上水體剖面辨識之應用研究。成功大學水利及海洋工程學系學位論文。2006。1-92。
  25. 鄭禹祥(2007)。COD、SS及流量即時自動監測系統之發展與建立。中央大學環境工程研究所學位論文。2007。1-125。
  26. 江彥廷(2007)。GPS反射訊號結合數值地形資料庫應用於河川水文資訊量測之研究。成功大學地球科學系學位論文。2007。1-74。
  27. 吳如雅(2008)。非接觸式光學監測混凝系統技術之發展。中央大學環境工程研究所學位論文。2008。1-66。
  28. 黃偉哲(2009)。渠流通過透水構造物之流場及紊流特性研究。成功大學水利及海洋工程學系學位論文。2009。1-166。
  29. 吳子佳(2015)。應用無人飛行載具以大尺度質點影像法量測水流表面流速。中興大學水土保持學系所學位論文。2015。1-94。
  30. 柯亭羽(2017)。應用無人飛行載具結合大尺度質點影像量測法進行河道物理棲地型態分類。中興大學水土保持學系所學位論文。2017。1-107。
  31. 陳彥伶(2017)。應用UAV-LSPIV系統進行表面流場觀測之初步研究。中興大學水土保持學系所學位論文。2017。1-90。