Title

基於生命週期效益的道路建設投資策略

Translated Titles

The Investment Strategy of Road Infrastructure based on Life Cycle Benefit

Authors

林俊豪

Key Words

益本比 ; 碳投資 ; TOPSIS ; 生命週期成本 ; 行車成本 ; Benefit-cost ratio ; Carbon investment ; TOPSIS ; Life cycle cost ; VOC

PublicationName

成功大學土木工程學系學位論文

Volume or Term/Year and Month of Publication

2018年

Academic Degree Category

碩士

Advisor

楊士賢

Content Language

繁體中文

Chinese Abstract

聯合國氣候變遷委員會透過多項科學證據證實,人類活動造成現在的氣候變遷事實,並警告溫度與降雨型態之變遷會大大衝擊人類社會,造成生命財產的損失。為此,各部門都應將碳排放減量納入決策作考量。回顧道路建設的評估指標可發現,現行規定僅以自行車道作為低碳運輸的要求,尚未考慮道路設施本體及其用路人之碳排放。儘管國內外已有道路建設碳排放之相關研究,但尚缺乏於規劃階段作評估,並且考慮主管機關與用路人交互關係之研究。本研究試圖從生命週期效益的角度出發,同時考量生命週期成本與碳排放,並且以可行性評估之資料為基礎作分析。首先透過現況與目標年之道路系統分析,將服務水準不足之問題量化,並以無新建工程的情境為基準,探討計畫道路能帶來的預期效益。過程中深入討論主管機關的資源消耗與養護策略以及用路人的行車成本,並經由鋪面績效連接兩者。接著以益本比與碳投資之概念,嘗試將案例規模從分析中移除,著重於差異性比較。最後以順序偏好法(TOPSIS),在基於生命週期效益的情況下,進行道路建設投資策略之決策。本研究之產出除了基於生命週期效益的道路建設投資策略外,還包含有助於低碳規劃與設計之工程碳係數及預防性養護對主管機關與用路人效益之釐清。

English Abstract

The objective of this study is to develop an investment strategy framework to incorporate the carbon emission (CE) and life cycle costing (LCC) into the decision making process of a new roadway construction project. Since the excessive CE by human activities cause the extreme climate event, Taiwan has clearly set out a long-term greenhouse gas reduction target of a 50% reduction from 2005 levels by the year 2050. However, CE is not considered in the decision making process of a roadway infrastructure project selection yet and the cost consideration is not from the LCC stand point. Therefore, it’s necessary to develop an investment strategy framework consists by a LCC model to calculate project agency and user cost and a CE model to calculate the cradle to grave carbon emission of the candidate project. Three scenarios had been created to perform the analysis and their result of benefit-cost ratio were used as attributes in the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) to rank the project priority. This decision support tool utilized the data collected during the project feasibility study. The results showed that although agency invested cost and carbon emission for the new roadway project, the LCC and CE of the project would decrease eventually and implement preventive maintenance could decrease LCC and CE. Finally, using the benefit-cost ratio of LCC and CE as the attributes for TOPSIS could effectively rank among proposed projects.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
Reference
  1. Abo-SinnaA., & Amer, A. H.M. (2005). Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Applied Mathematics and Computation, 162(1), 頁 243-256.
    連結:
  2. ASTM. (1993). Standard Technology Relating to Travelled Surface Characteristics. Annual Book for ASTM Standards, Section 4, Volume 04.03.
    連結:
  3. AwasthiChauhan, S. S., & Omrani, H.A.,. (2011). Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert systems with Applications, 38(10), 頁 12270-12280.
    連結:
  4. BrundtlandH.G. (1987). Report of the World Commission on environment and development:" our common future.". United Nations.
    連結:
  5. BryceM., Flintsch, G., & Hall, R. P.J. (2014). A multi criteria decision analysis technique for including environmental impacts in sustainable infrastructure management business practices. Transportation Research Part D: Transport and Environment, 32, (頁 435-445).
    連結:
  6. ChupinPiau, J. M., & Chabot, A.O.,. (2013). Evaluation of the Structure-Induced Rolling Resistance (SRR) for Pavements Including Viscoelastic Material Layers. Materials and structures, 46(4), 頁 683-696.
    連結:
  7. EppsA.J. (2002). Recommended performance-related specification for hot-mix asphalt construction: Results of the WesTrack project (Vol. 455). Transportation Research Board.
    連結:
  8. FengC. (1995). Fuzzy multicriteria decision-making in distribution of factories: an application of approximate reasoning. Fuzzy sets and systems, 71(2), 頁 197-205.
    連結:
  9. FHWA. (2010). Life-Cycle Cost Analysis RealCost User Manual. US Department of Transportation, Federal Highway Administration.
    連結:
  10. HaasHudson, W. R., & Zaniewski, J. P.R.,. (1994). Modern pavement management.
    連結:
  11. Heijungs& Suh, S.R.,. (2013). The computational structure of life cycle assessment (Vol. 11). Springer Science & Business Media.
    連結:
  12. HuangH.Y. (1993). Pavement analysis and design.
    連結:
  13. HudsonW.R. (1981). Road roughness: It’s Element and Measurements. In Transportation Research Record, Transportation Research Board, National Research Council, Washington, D.C.
    連結:
  14. IPCC. (2007). Climate Change 2007 - IPCC Fourth Assessment Report.
    連結:
  15. IPCC. (2013). Climate Change 2013 - IPCC Fifth Assessment Report.
    連結:
  16. KimPark, C. S., & Yoon, K. P.G.,. (1997). Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. International Journal of Production Economics, 50(1), 頁 23-33.
    連結:
  17. SantosFerreira, A., & Flinstch, G.J.,. (2017). A multi-objective optimization-based pavement management decision-support system for enhancing pavement sustainability. Journal of Cleaner Production 164, 頁 1380-1393.
    連結:
  18. UNDP. (1981). Research on the Interrelationships Between Costs of Highway Construction, Maintenance, and Utilization. United Nations Development Programme.
    連結:
  19. WSDOT. (2012). WSDOT Pavement Notebook. Washington State Department of Transportation.
    連結:
  20. Yu, B., Gu, X., Ni, F., & Guo, R. (2015). Multi-objective optimization for asphalt pavement maintenance plans at project level: Integrating performance, cost and environment. Transportation Research Part D: Transport and Environment, 41, 頁 64-74.
    連結:
  21. 公共工程委員會. (2011). 永續工程-節能減碳白皮書.
    連結:
  22. 周家蓓張昭芸, 盧崇仁, 蔡鎮宇, 黃君凱, 王孝成, 黃建邦曾志煌,. (2011). 全國鋪面管理系統建置規劃. 交通部運輸研究所.
    連結:
  23. 林志棟, 王劍能, 張家瑞, 洪境聰. (2010). 柔性鋪面維護及補強技術之研究(2/2). 交通部.
    連結:
  24. 林志棟, 王劍能, 張家瑞, 洪境聰. (2009). 柔性鋪面維護及補強技術之研究(1/2). 交通部.
    連結:
  25. 范琳珮. (2009年4月). 生活圈道路系統建設成果與展望. 中興工程季刊 第103期, 頁 77~84.
    連結:
  26. 能源局. (2008). IPCC第四次減緩氣候變遷評估報告. 能源報導月刊.
    連結:
  27. 陳怡樺. (2015). 結合AHP與TOPSIS方法評估汽電共生廠擴建案. 逢甲大學工業工程與系統管理學系碩士論文.
    連結:
  28. 運輸研究所. (2007). 我國陸路交通政策展望建議書.
    連結:
  29. 運輸研究所. (2011). 2011年台灣公路容量手冊. 交通部運輸研究所.
    連結:
  30. AmosD. (2006). Pavement smoothness and fuel efficiency: an analysis of the economic dimensions of the Missouri Smooth Road Initiative.
  31. BennettR., & Greenwood, I. D.C. (2003). Volume 7: Modeling Road User and Environmental Effects in HDM-4, Version 3.0. International Study of Highway Development and Management Tools.
  32. BeuvingDe Jonghe, T., Goos, D., Lindahl, T., & Stawiarski, A.E.,. (2004). Environmental impacts and fuel efficiency of road pavements. European Roads Review, (2).
  33. Chatti& Zaabar, I.K.,. (2012). Estimating the effects of pavement condition on vehicle operating costs (Vol. 720). Transportation Research Board.
  34. Chesher& Harrison, R.A.,. (1987). Vehicle operating costs: evidence from developing countries . International Bank for Reconstruction and Development, Washington, DC (USA).
  35. FHWA. (2010). Life-Cycle Cost Analysis RealCost V2.5 USER MANUAL .
  36. Flintschde León, E., McGhee, K., & AI-Qadi, I.G.,. (2003). Pavement surface macrotexture measurement and applications. Transportation Research Record: Journal of the Transportation Research Board, (1860), 頁 168-177.
  37. GulenZhu, K., Weaver, J., Shan, J., & Flora, W.S.,. (2001). Development of improved pavement performance prediction models for the indiana pavement management system. Joint Transportation Research Program, 69.
  38. HarveyT., Meijer, J., Ozer, H., Al-Qadi, I. L., Saboori, A., & Kendall, A.J. (2016). Pavement Life-Cycle Assessment Framework. US Department of Transportation, Federal Highway Administration.
  39. HillC. (2009). Transportation and Sustainability Best Practices Background. AASHTO Sustainability Peer Exchange, Washington, DC, 32.
  40. HwangL., Yoon, K. L.C. (1981). Multiple Attribute Decision Making: Methods and Applications.
  41. IPCC. (2001). Climate Change 2001 - IPCC Third Assessment Report.
  42. ISO. (1997). Environmental Management: Life Cycle Assessment: Principles and Framework (Vol. 14040). International Organization for Standardization.
  43. ISO. (2004). Buildings and constructed assets-Service life planning-Part 5. Life cycle costing. International Organization for Standardization.
  44. MorosiukRiley, M. J., & Odoki, J. B.G.,. (2004). Modelling road deterioration and works effects-version 2-Highway Development and Management-HDM-4. Highway development and management series.
  45. RobbinsM., & Tran, N.M. (2015). Literature review: the effect of pavement roughness on vehicle operating costs.
  46. StrippleH. (2001). Life Cycle Assessment of Road: A Pilot Study for Inventory Analysis. Rapport IVL Swedish Environmental Research Institute, 96.
  47. TakamuraLoka, K., and Wittlinger, R.,K.,. (2001). Microsurfacing for preventive maintenance: eco-efficient strategy. International Slurry Seal Association Annual Meeting.
  48. UN. (2016). The Paris Agreement.
  49. Van DamJ., Harvey, J. T., Muench, S. T., Smith, K. D., Snyder, M. B., Al-Qadi, I. L., Ozer, H., Meijer, J., Ram, P. V., Roesler, J. R., Kendall, A.T. (2015). Towards Sustainable Pavement Systems: A Reference Document. US Department of Transportation, Federal Highway Administration.
  50. Walls III J.Smith M. R.&. (1998). Life-cycle cost analysis in pavement design-interim technical bulletin. No. FHWA-SA-98-079.
  51. Walls, M. SmithJ. (1998). Life-Cycle Cost Analysis in Pavement Design: Interim Technical Bulletin. FHWA.
  52. ZaniewskiP., W. R. Hudson, T. High, and S. W. HudsonJ. (1985). Pavement Rating Procedures. US Department of Transportation, Federal Highway Administration.
  53. 內政部營建署. (2002). 市區道路管理維護與技術規範手冊研究.
  54. 內政部營建署. (2016). 台南市仁德特27號道路東段工程規劃設計及監造委託服務作業基本設計報告.
  55. 公路總局. (2011). 台九線蘇花公路和中大清水段、蘇澳東澳段工程碳排放量評估報告. 交通部公路總局.
  56. 公路總局. (2013). 公路養護手冊. 交通部公路總局.
  57. 内政部營建署. (2017). 宜蘭縣「二結聯絡道新闢工程(都內段)」委託規劃設計及監造技術服務作業基本設計報告.
  58. 王小璠. (2005). 多準則決策分析. 滄海書局.
  59. 行政院. (2010). 國家節能減碳總計畫.
  60. 行政院. (2014). 生活圈道路交通系統建設計畫(公路系統)4年(104-107)計畫補助執行要點.
  61. 行政院主計處. (2016). 薪資與生產力統計年報. 行政院主計處.
  62. 吳清陽. (2010). 應用理想解類似度順序偏好法(TOPSIS法)於最有利標之探討. 國立高雄應用科技大學商務經營研究所碩士論文.
  63. 吳瑞安. (2005). 永續運輸時代「生活圈道路系統建設計畫」之評估模式探討. 國立中山大學公共事務管理研究所在職專班碩士論文.
  64. 呂佳玲. (2003). 市區道路平坦度評估準則之評估. 國立台灣大學土木工程學研究所碩士論文.
  65. 沈熾林. (1990). 公共投資與成本效益分析. 五南.
  66. 林國顯鄭嘉盈, 張瓊文, 陳雅琴, 王勤銓, 陳柏江蘇振雄,. (2010). 行車成本調查分析與交通建設計畫經濟效益評估之推廣應用1/2. 交通部運輸研究所.
  67. 姚祖康. (1993). 路面管理系統. 人民交通出版社.
  68. 張保隆. (2007). 決策分析:方法與應用. 華泰文化.
  69. 張建斌. (2001). 改質瀝青混凝土之工程性質與績效. 國立成功大學土木工程學系碩士論文.
  70. 郭昱瑩. (2007). 成本效益分析. 華泰文化.
  71. 陳一昌, 許佩蒨, 黃榮堯, 曠永銓, 黃琬淇, 葛台生, 羅遠成, 何臺生, 周武雄, 張博翔, 曹志宏, 楊伊萍. (2012). 交通運輸工程碳排放量推估模式建立與效益分析之研究. 交通部運輸研究所.
  72. 陳一昌, 許書耕, 胡智超, 黃榮堯, 蔡宗益, 陳昭秀, 蔡紀震. (2013). 交通運輸工程節能減碳規劃設計手冊研究與編訂. 交通部運輸研究所.
  73. 陳永林. (2003). HDM-4運用於國內高速公路養護管理之研究. 國立中央大學土木工程研究所碩士論文.
  74. 陳奕良. (2013). 整合模糊分析網路程序法與模糊近似最佳解排序技術評估供應商之碳績效. 國立臺灣科技大學工業管理系碩士論文.
  75. 湯豐銘. (1988). 含爐石或飛灰混凝土之早期抗裂立學行為. 國立台灣大學土木工程研究所碩士論文.
  76. 楊士賢. (2016). 低碳綠能鋪面保育工法-超微表技術. 中華民國第十二屆鋪面工程材料再生及再利用學術研討會暨2016世界華人鋪面專家聯合學術研討會.
  77. 楊士賢. (2017). 西濱快速公路八棟寮至九塊厝瀝青混凝土工廠與現地道路鋪設碳足跡盤查。.
  78. 蔣子平. (2004). 建構台灣區國道鋪面績效指標及平坦度預測模式之研究. 國立中央大學土木工程學系博士論文.
  79. 蕭代基, 鄭蕙燕, 吳珮瑛, 錢玉蘭, 溫麗琪. (2002). 環境保護之成本效益分析-理論、方法與應用. 俊傑書局.
  80. 蕭代基, 溫麗琪, 申永順. (2009). 碳排放交易機制建置之研究. 行政院經濟建設委員會.
  81. 環保署. (2010). 溫室氣體查驗指引.
  82. 環保署. (2016). 2016年中國民國國家溫室氣體排放清冊報告.
  83. 環保署. (2017). 碳足跡產品類別規則-基礎建設-道路.
  84. 簡禎富. (2015). 決策分析與管理. 雙葉書廊有限公司.