透過您的圖書館登入
IP:18.219.205.202
  • 學位論文

五味子醇與大豆甙元對於促進神經細胞胞突生長的作用與其機轉之探討

Study on the Effect and Mechanism of Schisandrin and Daidzein for Neurite Outgrowth in Primarily Cultured Neuronal Cells

指導教授 : 王淑美
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


神經細胞依賴神經軸突(axon)與樹突(dendrite)來達成彼此間的聯繫。神經系統的疾病,包括中風、外傷等,常會造成軸突與樹突的傷害與萎縮,導致運動、感覺、語言等神經功能障礙。如何能夠促進神經胞突的生長,一直是基礎與臨床神經醫學的重要課題。我們的研究係以體外培養的大鼠神經元細胞為實驗對象,尋找能夠促進神經胞突生長的分子,與探討其訊息傳遞機轉。研究的第一部份,使用中藥草常用的五味子(Schisandra chinensis)所含的一個主要成分:五味子醇(schisandrin),觀察其對背根神經節神經元細胞(dorsal root ganglion neuron, DRG neurons)與海馬迴神經元細胞(hippocampal neurons)的效果。我們發現五味子醇作用24小時後,能夠促進 DRG neurons 的胞突延長伸展與分枝,且在濃度為 3 μg/ml 時的效果最好。而 3 μg/ml 的五味子醇對於大型或小型的 DRG neurons 皆有增加胞突生長的效果。因此進一步分析五味子醇促進 DRG neurons 胞突增生的機轉,在加入五味子醇前使用 KT5720(PKA 抑制劑)、PD98059(MEK 抑制劑)、或 LY294002(PI3K抑制劑)等激酶抑制劑,發現僅有 LY294002 能夠抑制胞突增生。而以西方點墨法分析激酶活化情形,發現五味子醇作用 15 分鐘後能促進 PI3K 與 Akt 的磷酸化;LY294002 預先處理則會抑制磷酸化 Akt 激酶的增加。五味子醇也增加 CREB 蛋白的磷酸化,且同樣會受到 LY294002 預先處理的抑制。綜合以上的結果,我們推論五味子醇係透過 PI3K-Akt-CREB 的訊息傳遞路徑來促進 DRG neuron 的胞突增生。另一方面,我們亦發現五味子醇能夠促進 hippocampal neurons 的胞突伸展與分枝。進一步分析五味子醇促進 hippocampal neurons 胞突增生的機轉,在加入五味子醇前使用 KN93(CaMKII 抑制劑)、εV1-2(PKCε抑制劑)或 PD98059(MEK 抑制劑)均能夠抑制神經胞突增生。使用 Fluo-3 AM 染色,顯示加入 五味子醇十分鐘後會使細胞內鈣離子濃度上升。以西方點墨法分析,發現五味子醇作用 15 分鐘後能促進 CaMKII, PKCε, MEK 與 CREB 蛋白的磷酸化(活化);KN93 會抑制因五味子醇引起的 PKCε 激酶活化、εV1-2 會抑制 MEK 激酶的活化、PD98059 則會抑制磷酸化 CREB 蛋白的增加。綜合以上的結果,我們推論五味子醇會使鈣離子進入 hippocampal neuron,然後啓動 CaMKII-PKCε-MEK-CREB 的訊息傳遞路徑來促進神經胞突增生。另外,五味子醇也會使海馬迴神經細胞的 post-synaptic protein 95 (PSD-95) 表達增加,與促進細胞攝入 FM1-43,顯示五味子醇亦具有促進海馬迴神經細胞突觸增生(synaptogenesis)的效果。 研究的第二部份,針對大豆異黃酮(isoflavone)的一個主要成分:大豆甙元(daidzein),分析它對於背根神經節神經元細胞(dorsal root ganglion neuron, DRG neurons)的效果。我們發現大豆甙元作用24小時後,能夠促進 DRG neurons 的胞突延長伸展與分枝,且在濃度為 30 μM 時的效果最好。而 30 μM 的大豆甙元對於大型或小型的 DRG neurons 皆有增加胞突生長的效果。進一步分析大豆甙元促進 DRG neurons 胞突增生的機轉,在加入大豆甙元前使用 ICI 182780(estrogen receptor α/β 拮抗劑)或 G15(membrane estrogen receptor GPR-30 拮抗劑),皆無抑制胞突增生的效果,顯示大豆甙元雖為植物雌激素的一種,但並非透過雌激素接受器使 DRG neuron 的胞突增生。而以 PP2(Src 抑制劑)、staurosporin(泛 PKC 抑制劑)、rottlerin(PKCδ 抑制劑)、U0126(MEK 抑制劑)等激酶抑制劑預先處理,則能夠抑制大豆甙元引起的胞突增生。而以西方點墨法分析激酶活化情形,發現大豆甙元作用後能促進 Src, PKCδ, ERK 的磷酸化(活化);PP2 會抑制因大豆甙元引起 PKCδ 激酶的磷酸化,rottlerin 則會抑制磷酸化 ERK 激酶的增加。歸納以上的結果,我們推論大豆甙元係透過 Src-PKCδ-MEK/ERK 的訊息傳遞路徑來促進 DRG neuron 的胞突增生。 總結我們的研究結果,顯示五味子醇與大豆甙元均有促進神經細胞胞突生長的作用,並透過不同的訊息路徑來完成反應。而五味子醇對於背根神經元與海馬神經元細胞皆能促進胞突增生,但亦經由不同的訊息傳遞方式來達成。

並列摘要


Neurons in different location require axons and dendrites to communicate with each other. Neurological diseases, e.g. stroke, head trauma, and spinal cord injury, often damage axons and dendrites and result in deficits of motor, sensory and language functions. How to promote growth of neuronal processes (neurites) is a major issue in the field of basic and clinical neuroscience. Our researches utilized in vitro cultured rat neurons to search for potential neuritogenic molecules and its signaling mechanisms. The first part of the research focused on schisandrin, a major ingredient of the Chinese herb Schisandra chinensis, and studied its effect on dorsal root ganglion (DRG) and hippocampal neurons. After treatment with schisandrin for 24 hours, DRG neurons showed increased lengthening and branching of neurites, and maximal effect was seen at a concentration of 3 μg/ml. Both large and small DRG neurons responded to schisandrin. To study the signaling pathway, KT5720 (PKA inhibitor), PD98059 (MEK inhibitor), or LY294002 (PI3K inhibitor) were applied before schisandrin treatment in DRG neurons, and only LY294002 blocked the neuritogenic effect of schisandrin. Western blot analysis showed that schisandrin enhanced phosphorylation of PI3K and Akt, which were blocked by pretreatment of LY294002. Schisandrin also increased phosphorylation of CREB, which was also inhibited by pretreatment of LY294002. Therefore, schisandrin activated PI3K-Akt-CREB pathway to enhance neurite outgrowth. Besides neuritogenic effect on DRG neurons, schisandrin also increased neurite length and branching complexity in hippocampal neurons. This effect was reversed by pretreatment with KN93 (CaMKII inhibitor), εV1-2 (PKCε inhibitor), or PD98059 (MEK inhibitor). Schisandrin also induced calcium inflow into hippocampal neurons in 10 minutes. Western blot showed that schisandrin activated CaMKII, PKCε, MEK and CREB, and the activation of schisandrin-induced PKCε, MEK, and CREB were blocked by pretreatment with KN93, εV1-2, and PD98059, respectively. The result indicated schisandrin caused calcium inflow and activated CaMKII-PKCε-MEK-CREB pathway to increase neuritogenesis. In addition, schisandrin increased expression of post-synaptic protein 95 and uptake of FM1-43, suggesting its role in synaptogenesis of hippocampal neurons. The second part of this study focused on daidzein, a major component of isoflavone. Following treatment of daidzein for 24 hours, both small and large DRG neurons demonstrated increased lengthening and branching of neurites, and maximal effect occurred at 30 μM. Despite structural similarity of daidzein to estrogen, ICI 182780 (estrogen α/β receptor inhibitor) and G15 (membrane estrogen receptor GPR-30) failed to inhibit the neuritogenic effect of daidzein, indicating that daidzein did not stimulate neurite outgrowth via the estrogen receptors. On the other hand, PP2 (Src inhibitor), staurosporin (pan-PKC inhibitor), rottlerin (PKCδ inhibitor), and U0126 (MEK inhibitor) pretreatment abolished the neuritogenic response of DRG neurons to daidzein. Increased phosphorylation of Src, PKCδ, and MEK occurred after daidzein treatment, and activation of the latter two kinases were blocked by PP2 and rottlerin respectively. Therefore, daidzein activated Src-PKCδ-ERK pathway, which led to neuritogenesis in DRG neurons. In conclusion, the results of our research demonstrate that both schisandrin and daidzein have neuritogenic effect, and act by different signaling mechanisms. Schisandrin enhanced neurite outgrowth of both DRG and hippocampal neurons, also via different pathways of signal transduction.

參考文獻


Ahnert-Hilger G, Holtje M, Grosse G, et al. (2004) Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J Neurochem, 90, 9-18.
Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci, 32, 347-81.
Behl C (2002) Oestrogen as a neuroprotective hormone. Nat Rev Neurosci, 3, 433-42.
Behl C, Widmann M, Trapp T, Holsboer F (1995) 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun, 216, 473-82.
Benes C, Soltoff SP (2001) Modulation of PKCdelta tyrosine phosphorylation and activity in salivary and PC-12 cells by Src kinases. Am J Physiol Cell Physiol, 280, C1498-510.

延伸閱讀