透過您的圖書館登入
IP:3.142.201.214
  • 學位論文

探討微量元素對骨髓基質幹細胞生長及分化過程之影響

Trace elements participate in regulating the growth and differentiation of mouse bone marrow M2-10B4 cells

指導教授 : 張基隆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


位於骨髓基質或脂肪等成體組織的基質幹細胞( Mesenchymal stem cells , MSCs )具多向( multilineage )分化潛能,可分化成造骨、軟骨、脂肪、神經及肝細胞等,藉此特性可應用於組織修復或治療老化疾病,如:骨質疏鬆症、退化性骨關節炎、神經退化性疾病等。過去研究指出骨形成及骨質平衡中,微量元素扮演重要角色,如:錳可參與骨礦化調節;鋅為骨質形成及組織復原調控因子;硒缺乏時則可能導致骨關節炎發生;銅則於膠原蛋白形成扮演角色,顯示微量元素於骨骼發展及成熟過程中極具必要性。 然而,目前對於微量元素是否具調控基質幹細胞( MSCs )生長和分化未明。因此,本研究將選用錳( MnCl2 , Mn )、鋅( ZnSO4 , Zn )、硒( Na2SeO3 , Se )、銅( CuSO4 , Cu ),四種已證實具維持造骨細胞活性並達到強化骨骼功能的微量元素,探討其是否亦具有影響骨髓間質細胞株M2-10B4增殖及分化成造骨細胞(osteoblast)之能力,並進一步釐清相關調控機制。 研究結果顯示,低劑量0.01 mM 錳、鋅、銅及0.03 mM硒,可維持M2-10B4細胞生長;而高劑量0.1 mM 錳、鋅、 0.15 mM 硒及0.2 mM 銅,則抑制細胞生長。由細胞週期結果指出,低劑量錳、鋅及銅作用24及48小時下,均未顯著影響細胞週期進行;而高劑量錳、鋅、硒及銅,則不論於24或48小時作用下,均促使細胞週期停滯於G2/M期,顯示高劑量微量元素具抑制M2-10B4複製分裂能力。透過DNA片段化分析,發現過量微量元素僅使細胞週期停滯,但未使細胞走向凋亡( apoptosis )。利用西方點墨法檢測G2/M期調控蛋白chk2、Wee 1、cdc25c及cdc2表現,結果顯示高濃度錳、鋅及銅作用下,確實提高G2/M期調控蛋白之表現,進而促使細胞週期停滯於G2/M期。另於微量元素對基質幹細胞分化為造骨細胞之影響試驗,藉由測定造骨細胞分化之所需專一性轉錄因子Runx2( Runt-related transcription factor 2 )及ALP( alkaline phosphatase )表現中,RT-PCR結果所示,高劑量鋅、硒及銅下,皆顯著抑制基質幹細胞分化為造骨細胞。 由本研究結果得知,人體內適量微量元素攝取將有助於維持基質幹細胞活性,但若攝入量過高時,不僅造成細胞生長受限,亦可能干擾骨髓基質幹細胞分化為造骨細胞之能力,故飲食中適量攝取微量元素具其重要性,而不適當攝取反可能引發骨質疏鬆症等疾病發生之危機。

並列摘要


Mesenchymal stem cells (MSCs), the primitive progenitors from bone marrow, adipose tissue and various adult tissues have self-renew ability and multilineage potential to differentiate into osteoblasts, adipocytes, chondrocytes, muscle cells, neurons, hepatocytes and insulin-producing β cells. Because of their specificity and functional properties MSCs can applied to repair injurious tissues and treat degenerate diseases such as osteoporosis, osteoarthritis and neurodegenerative disease. Previous studies indicated trace elements play important roles in bone formation and balance. Manganese ( Mn ) participates in regulating bone mineralization. Zinc ( Zn ) is essential for bone formation and tissue repair. Lack of selenium ( Se ) may increase risk of knee osteoarthritis. Cooper ( Cu ) deficiency reduces collagen formation. Therefore, trace elements are essential in bone development and maturation. However, trace elements how effect cell growth and differentiation of mesenchymal stem cells and the regulatory mechanisms have not been full elucidated. This study used manganese chloride ( MnCl2 ), zinc sulfate ( ZnSO4 ), sodium selenite ( Na2SeO3 ) and cupric sulfate ( CuSO4 ) and investigated the effects and molecular mechanisms of these trace elements on cell growth and osteogenic differentiation of bone marrow stromal cell line M2-10B4. Our results revealed that MSCs treated with low dose ( 0.01 mM ) MnCl2 , ZnSO4 , CuSO4 and ( 0.03 mM ) Na2SeO3 could maintain cell proliferation, but high dose ( 0.1 mM ) MnCl2, ZnSO4, ( 0.15 mM ) Na2SeO3 and ( 0.2 mM ) CuSO4 inhibited cell growth. Cell cycle analysis indicated MSCs at low dose of MnCl2, ZnSO4, CuSO4 and Na2SeO3 had unapparent effect for 24 and 48 hours, but at high dose all increased G2/M phase arrest following 24 and 48 hours. Results established M2-10B4 cells in excess of trace elements inhibited cell replication and mitotic capabilities. DNA ladder assay showed M2-10B4 cells exposure to excess trace elements promoted G2/M phase arrest but not apoptosis. The expressions of chk2, Wee1, cdc25c and cdc2 reflected possible function of higher MnCl2, ZnSO4 and CuSO4 dose in supporting the G2/M phase arrest. In addition, the mRNA expression of Runx2 ( Runt-related transcription factor 2 ) and ALP ( alkaline phosphatase ) further elucidated their osteogenic differentiation potential. Our results demonstrated that higher trace elements inhibited MSCs to differentiate into osteoblasts. Our study indicated appropriate intake of trace elements might be helpful in keeping activities of stromal stem cells. Conversely, excessive trace elements resisted cell growth and reduced MSCs osteogenic abilities. Therefore, it is important to take suitable trace elements that will improve healthy and prevent diseases.

參考文獻


Ahrens, M., Ankenbauer, T., Schroder, D., Hollnagel, A., Mayer, H. & Gross, G. (1993). Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol, 12, 871-880.
Anderson, J.G., Fordahl, S.C., Cooney, P.T., Weaver, T.L., Colyer, C.L. & Erikson, K.M. (2008). Manganese exposure alters extracellular GABA, GABA receptor and transporter protein and mRNA levels in the developing rat brain. Neurotoxicology, 29, 1044-1053.
Aubin, J.E. (1998). Advances in the osteoblast lineage. Biochem Cell Biol, 76, 899-910.
Bae, Y.J. & Kim, M.H. (2008). Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol Trace Elem Res, 124, 28-34.
Balter, M. & Vogel, G. (2001). Nobel prize in physiology or medicine. Cycling toward Stockholm. Science, 294, 502-503.

延伸閱讀