透過您的圖書館登入
IP:3.145.171.144
  • 學位論文

軸流式壓縮機葉輪五軸加工製程規劃研究

Five-axis Machining Process Planning Research for Axial-flow Compressor Impeller

指導教授 : 蔡哲雄
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著國防、航太、模具、汽車等等精密製造產業在五軸加工之應用率持續成長,五軸加工技術的重要性與日俱增。為提昇五軸加工技術之應用研究參考,本文針對軸流式壓縮機葉輪的切削路徑規劃進行研究探討,葉輪的最大特徵就是具有許多和輪轂連結成形之細薄扭轉的葉片(Blades),其形狀複雜無法用一般傳統三軸加工機具加工,通常採用五軸加工機一次切削完成。壓縮機葉輪(Impeller)在航太工業及民生工業中是重要的動力元件,葉輪依其功能的需求而有各種不同的設計。本文主要是針對葉片高厚比接近20:1的軸流式壓縮機葉輪的切削製程,應用刀具軸向法則,規劃葉輪的銑製,並改變刀軸方向以端銑模式規劃葉片面銑製,以減少過切或讓切情形。本文應用Unigraphics(UG) CAD/CAM系統、Procam系統、Vericut系統進行五軸加工刀具路徑規劃、實體模擬及五軸切削運動模擬。最後並於具有X、Y、Z、A、B軸的五軸加工機上實際切削,以驗證本切削製程路徑規劃之可行性。

並列摘要


Five-axis numerically controlled machining has more recently been applied in national defence and motor vehicle industries to produce precisely complex surface parts, such as aerospace parts, impeller blades, dies and moulds. For promoting the application of five-axis machining technology, this research presents a milling process plan for machining the impeller blades was provided. The impeller of the axial-flow compressor contains a lot of thin blades on the hub of the impeller. In addition, the thin blades of the impeller possess overlapped surfaces and with large blade height/thickness ratio (about 20:1), so that the machining of the impeller is not easy. At the present time, the impeller machining usually adopts five-axis numerically controlled machines because of the tool motion has two additional degrees of freedom compared with traditional three-axis machining. In this paper, a new milling process method for thin blade with twisted ruled surfaces has presented. Our strategy is to change the tool orientation such that the overcut or undercut is minimized. Unigraphics CAD/CAM system, Procam system, and Vericut system were used to model the geometry of the impeller and to simulate and verify the cutting process in five-axis machine (X, Y, Z, A, and B axes). The validity and effectiveness of the blade milling process was demonstrated on Forestline five-axis machine with Num 1060M controller.

參考文獻


[1] B. K. Choi, J. W. Park, C. S. Jun, “Cutter-Location data optimization in 5-axis surface machining” , Computer-Aided Design, vol. 25,no.6, pp. 377-386, 1993
[2] Rong-Shine Lin, Y. Koren, “Efficient Tool-Path Planning for Machining Free-Form Surfaces”, Journal of Engineering for Industry, ASME, vol. 118, pp. 20-28,1996
[4] E. L. J. Bohez, S. D. R. Senadhera, K. Pole, Joost R. Duflou, T. tar, "A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers," Journal of Manufacturing Systems, vol. 16, no. 6, pp.422-436,1997
[5] K. Morishige and Y. Takeuchi,“5-axis Control Rough Cutting of an Impeller with Efficiency and Accuracy”, Proceedings of the 1997 IEEE International Conference on Robotics and Automation, pp.1241-1246,1997
[10] S.L. Chen and W. T. Wang, “Computer aided manufacturing technologies for centrifugal compressor impellers”, Journal of Materials Processing Technology ,vol.115,pp.284-293,2001

被引用紀錄


劉華樑(2008)。球形端銑刀銑削曲面之刀具路徑規劃〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2008.00612
吳孟霖(2007)。五軸加工後處理程式之建構與應用〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2007.00396
廖凱偉(2007)。離心式葉輪輪轂面五軸粗銑及精銑之刀具路徑規劃〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2007.00320
陳彥甫(2011)。曲面加工等扇形高螺旋刀具路徑規劃〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0006-1607201114272300

延伸閱讀