透過您的圖書館登入
IP:18.191.165.88
  • 學位論文

單晶片溫控器於熱循環系統之應用

Application of Single Chip Microcontrollers in the Thermal Cycling System

指導教授 : 劉思正 陳志堅

摘要


本論文設計一個單晶片微控制器控制熱循環系統之溫度,並使用自製程式進行熱循環系統之熱傳模擬,在不同的溫區設置及不同的腔體移動速率,探討不同的溫區設定溫度與速率對於腔體的加熱影響,從而調整出較適合的溫區設定參數。將高溫裂解區設置於熱循環系統中央,並利用致冷晶片使低溫退火區溫度維持在更低的溫度,可有效的加快升、降溫速率進而改善熱循環系統之性能以達到縮短PCR反應時間。以8051單晶片自製溫度控制器進行溫度控制,藉由溫度感測IC量測溫區鋁塊之溫度,將量測溫度與設定溫度進行比例-積分-微分(proportional-integral-derivative,PID)運算輸出,並與開關(On-Off)式加熱方式進行比較,證明PID溫度控制應用在熱循環系統上比On-Off的方式能提供更平穩的溫度控制在溫區溫度上。並且在溫度的設定上,可以直接使用鍵盤進行設定溫度之調整,使控制溫度的設定更加容易。完成穩定的加熱控制後進行熱循環,進行腔體與溫度鋁塊的密合度改善,並成功的加快升降溫速率,最後由模擬及實驗的結果顯示在三個溫區的溫度分別設定為高溫區105°C、中溫區70°C以及低溫區使用致冷晶片降溫,以及在不同的溫區使用不同的速率來進行熱循環,最後以高溫區1.1mm/s、中溫區2.7mm/s、低溫區2.7mm/s以及回程高溫區3.3mm/s的速率去完成聚合酶連鎖反應(polymerase chain reaction,PCR),而在此速率下在單次熱循環只需花費2分鐘,並且只需1小時20分鐘即可完成35次的熱循環。使用三種不同的樣本密封方式來進行PCR,結果顯示改善後的熱循環方式可成功放大目標DNA之片段,並且證明自製的溫度控制器可應用於熱循環裝置上並完成DNA擴增。

關鍵字

單晶片 PCR PID 致冷晶片

並列摘要


In this thesis, a single-chip microcontroller controls the temperature of the thermal cycling system ,and homemade a program to simulation thermal conduction with the thermal cycling system ,in different temperature settings and different moving speed of the cavity effects of different temperature zones set temperature and the rate of heating to effect the cavity, thereby adjusting the more appropriate temperature zone set parameters. The high temperature zone is set at the center of the thermal cycling system, and using the TE cooler is set the low temperature annealing zone is maintained at a lower temperature, can effectively speed up the cooling rate. Use the 8051 single ship to homemade temperature controller for temperature control,and use a temperature sensing IC by the amount of the aluminum block temperature zone temperature, the measured temperature and the set proportional-integral-derivative, PID operation output, and with the switch (On-Off) heating method compares to prove PID temperature control than the On-Off way to provide more stable temperature control temperature in the temperature region. And in the temperature setting ,the keyboard can be used to adjust the target temperature, the control temperature setting easier. Conduct the themarl cycle after the complete and stable heating control , the chamber temperature of the aluminum block microleakage improved and accelerated cooling rate of success. Finally the simulation and experimental results show that the temperature in three temperature zones were set at 105 ° C ,70 ° C and low temperature using TE cooler, and the temperature in different areas using different rates to carry out thermal cycles, the high temperature zone 1.1mm / s, in the temperature region 2.7mm / s, low temperature 2.7mm / s and return temperature zone 3.3mm / s rate to complete the polymerase chain reaction (polymerase chain reaction, PCR), and in this rate in a single thermal cycle takes only 2 minutes, and only 80 minutes to complete 35 thermal cycles. Three different samples of seals for PCR, the results show the improved thermal circulation method can be successfully amplified fragment of the target DNA. And prove homemade temperature controller can be applied on the device and complete thermal cycle DNA amplification.

並列關鍵字

Single Chip PCR PID TE Cooler

參考文獻


[2] Trung, N., Saito, M., Takabayashi, H., Viet, P. H., Tamiy, E., and Takamura, Y., 2010, “Multi-chamber PCR chip with simple liquid introduction utilizing the gas permeability of polydimethylsiloxane,” Sensors and Actuators B: Chemical, Vol. 149, No. 1, pp. 284-290.
[4] Besecker, J., Cornell, K. A., and Hampikian, G., 2013, “Dynamic passivation with BSA overcomes LTCC mediated inhibition of PCR,” Sensors and Actuators B: Chemical, Vol. 176, pp. 118-123.
[6] Ke, C., Kelleher, A. M., Berney, H., Sheehan, M., and Mathewson, A., 2007, “Single step cell lysis/PCR detection of Escherichia coli in an independently controllable silicon microreactor,” Sensors and Actuators B: Chemical, Vol. 120, No. 2, pp. 538-544.
[7] Wang, J. H., Chien, L. J., Hsieh, T. M., Luob, C. H., Chou, W. P., Chen, P. H., Chen, P. J., Lee, D. S., and Lee, G. B., 2009, “A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection,” Sensors and Actuators. B, Chemical, Vol. 141, No. 1, pp. 329-337.
[8] Hühmer, A. F. R., and Landers, J. P., 2000, “Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes,” Analytical Chemistry, Vol. 72, No. 21, pp. 5507-5512.

被引用紀錄


朱森村(2017)。臺灣政策執行中多階層否決之研究—以核四興建與中科三期開發案為例〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201704084
沈芯菱(2015)。影響總統施政民意因素在重大事件中之探討〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2015.11101
張碧琴(2014)。新竹縣政府治理之研究(1989-2009)─「一致政府」與「分立政府」的觀察〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2014.10787
陳譽文(2011)。選民與政治人物連結類型與其變遷 —以2004年及2008年總統選舉與立委選舉為例—〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.02513
高翠敏(2011)。分立政府對立法生產力之影響—以兩岸相關議題為例〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-0609201119181700

延伸閱讀