透過您的圖書館登入
IP:216.73.216.177
  • 學位論文

辨識提升關鍵字廣告點閱率之重要品質要素

Identifying the key quality elements of keyword advertisement for increasing hit rate

指導教授 : 陳隆昇
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


關鍵字廣告已經躍居網路廣告的主流之一。在關鍵字廣告中,如何創造提升點閱率,不管是對廣告商或廣告主而言,都是一項重要的議題。簡單的說,廣告主選擇關鍵字,當搜尋引擎處理到所挑選的關鍵字時,會在搜尋結果的頁面中出現廣告主刊登的廣告,而當所觸發的廣告被點閱時,才會被計費。因為關鍵字廣告是透過使用者自發性的行為,有別於傳統的強迫曝光的橫幅廣告,所以它是目前網路廣告方式中點閱率相當高的一種廣告方式。關鍵字廣告由於點閱率高加上每次點閱成本低,是現在最受中小企業歡迎的網路廣告方式。因此,如何提升點閱率,以增強關鍵字廣告的效能便顯得十分重要。本研究試圖定義關鍵字廣告的需求品質要素,並利用決策樹方法與狩野模式,從顧客的觀點來分析對於各種關鍵字廣告品質要素的顧客需求分類,以做為行銷策略上改善的方向。

並列摘要


Keyword advertising has become one of major trends in online advertisements. In keyword advertising, how to create a high hit rate is a critical issue for both advertisers and advertise agencies. Briefly speaking, the advertiser selects its keywords. When the search engine is used to conduct a search using any of those keywords, the advertiser’s advertisement will appear on the search results page. Advertisers will pay when a user clicks on the triggered advertisement. Because the keyword advertising is different from traditional banner advertisements which force users to read, it has become a popular ways for advertising. And the advertising cost is calculated by its click amount. It’s cheaper than traditional online advertisements. It’s very popular and suitable for small and medium enterprises. Therefore, how to enhance the benefits of keyword advertising by increasing its click rate is one of important problems. Consequently, this study aims to define the quality elements of keyword advertising and then use Kano analysis and decision trees algorithm to categorize customers’ needs and to extract latent knowledge for adjusting marketing strategies from the viewpoints of customers.

參考文獻


[3] 江義平、江岱衛(2010),關鍵字廣告點擊行為探究,電子商務研究,2010 年秋季,第八卷,第三期,第407-432頁。
[4] 李慶長、張銀益、陳文聰、蔡聰源(2010),關鍵字廣告之文案訊息設計對廣告成效影響的探討,北商學報,第18期,第79-108頁。
[6] 蘇朝墩(2004),專訪日本品質大師 - 狩野紀昭博士,質量雜誌,第40卷,第5期,第407-432頁。
[1] A. E. Schlosser, S. Shavitt and A. Kanfer(1999), “Survey of internet users attitudes toward internet advertising,” Journal of Interactive Marketing, Vol. 13, No 3, pp. 34-54.
[2] A. Jamain and D. J. Ha(2008), “Mining supervised classification performance studies: A meta-analytic investigation,” Journal of Classification, Vol. 25, No. 1, pp. 87–112.

延伸閱讀