透過您的圖書館登入
IP:18.220.90.54
  • 期刊
  • OpenAccess

Oxidative Chemistry and Chemical Biology of Superoxide, Nitric Oxide and Peroxynitrite

超氧化陰離子、一氧化氮及過氧化硝酸的氧化化學與生物化學

摘要


精胺酸生成一氧化氮的發現使研究進入了一個新的領域,在當今生物化學與生物醫學的範疇中,已知一氧化氮分子是鍵結在血紅素鳥嘌呤核甘酸環化酶的傳遞物質,間接的也具細胞毒性。過氧化硝酸在中性溶液中本身是一強的氧化劑,會氧化如甲硫胺酸、硝酸化之酥胺酸、硝酸化或氧化之鳥糞核糖,啟動脂質過氧化作用而造成細胞DNA的分裂。所以決定一氧化氮在生物系統中的重要性即著眼於其化學特性,因為一氧化氮在生物相關化學反應,而且也提供了有利的證據來明瞭一氧化氮特殊的功能,本綜合論述即是討論一氧化氮各種不同的生化特性與不同酶分子,如鳥嘌呤核甘酸環化酶、細胞色質P450、一氧化氮合成酶、過氧化氫酶和DNA的關係,藉以啟發一氧化氮不同的研究領域。

並列摘要


The discovery and the formation of nitric oxide from L-arginine opened a new field of research. The molecule nitric oxide (˙NO; nitrogen monoxide), known in biochemical and biomedical circles, serves as a messenger by binding to the heme of guanylate cyclase and, indirectly, as a cytotoxic agnet. Peroxynitrite in neutral solution is a powerful oxidant, oxidizing thiols such as mechionine, nitrating tyrosing residues, nitrating and oxidizing guanosine, initiating lipid peroxidation, and cleaving DNA. The primary determinants of how nitric oxide (˙NO) affects biological systems centers on its chemistry. Because the chemistry of ˙NO in biological system is extensive and complex. The chemical biology of NO provides a framework of relevant chemical reactions and provides a perspective that hopefully will insight into understanding the functions of ˙NO. This review discusses various aspects of the chemical biology of nitric oxide relating to biological molecules such as guanylate cyclase, cytochrome P450, nitric oxide synthase, catalase, and DNA and explores the potential roles of nitric oxide in different biological events.

延伸閱讀